www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraGruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Gruppen
Gruppen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppen: Frage
Status: (Frage) beantwortet Status 
Datum: 21:04 Mi 01.12.2004
Autor: destiny

Hallöchen!

Ich muss folgende Aufgabe lösen:
Sei (G, [mm] \circ) [/mm] eine Gruppe, und sei U eine nichtleere Teilmenge von G.
Für x, y [mm] \in [/mm] G definieren wir:
x  [mm] \sim [/mm] y, falls x [mm] y^{-1} \in [/mm] U.
Zeige, dass die folgenden Aussagen äquivalent sind:
(i)  [mm] \sim [/mm] ist eine Äquivalenzrelation auf G.
(ii) U ist eine Untergruppe von G.

Anschaulich ist mir das klar, aber ich weiß nicht genau, wie ich es "mathematisch korrekt" formulieren soll! Kann mir bitte jemand weiterhelfen? Wie soll ich da vorgehen?

Danke schön! *hihi*

Destiny






        
Bezug
Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:01 Do 02.12.2004
Autor: Julius

Hallo!

Sorry, hatte die Aufgabenstellung falsch gelesen.

Wenn die Aufgabe exakt so lautete, dann ist sie falsch gestellt.

Wenn $U$ nur als nichtleere Teilmenge vorausgesetzt wird, dann ist [mm] $\sim$ [/mm] im Allgemeinen keine Äquivalenzrelation.

Beispiel:

[mm] $(\IR\setminus\{0\}, \cdot)$ [/mm]  ,    [mm] $U=\{2\}$. [/mm]

Hier ist [mm] $\sim$ [/mm] etwa nicht reflexiv.

Viele Grüße
Julius

Bezug
                
Bezug
Gruppen: Frage
Status: (Frage) beantwortet Status 
Datum: 09:39 So 05.12.2004
Autor: destiny

Hallo, Julius!

Die Aufgabe habe ich schon richtig eingetippt.
U ist eine nichtleere Teilmenge von G.
und  [mm] \sim [/mm] ist eine Äquivalenrelation auf G.

Kannst du mir bitte helfen, die Aufgabe zu lösen? ich weiß nicht, wie sie geht? da ich ja die Äquivalenz zeigen muss, muss ich  beweisen, dass aus (i) der Punkt (ii) folgt, und umgekehrt. das heißt, dass aus (ii) der Punkt (i) folgt.

Vielen Dank für deine Hilfe!
Destiny

Bezug
                        
Bezug
Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:11 So 05.12.2004
Autor: Marc

Hallo Destiny!

> Hallo, Julius!
>  
> Die Aufgabe habe ich schon richtig eingetippt.
> U ist eine nichtleere Teilmenge von G.
>  und  [mm]\sim[/mm] ist eine Äquivalenrelation auf G.
>  
> Kannst du mir bitte helfen, die Aufgabe zu lösen? ich weiß
> nicht, wie sie geht? da ich ja die Äquivalenz zeigen muss,
> muss ich  beweisen, dass aus (i) der Punkt (ii) folgt, und
> umgekehrt. das heißt, dass aus (ii) der Punkt (i) folgt.

Das ist richtig.

Bitte schreibe uns doch mal die Bedingungen, die für eine Äquivalenzrelation gelten müssen und die Bedingungen, die für eine Untergruppe gelten müssen.

In (i) setzt du dann voraus, dass alle Bedingungen für eine Äquivalenzrelation erfüllt sind und versuchst nun zu folgern, dass jede Bedingung für eine Untergruppe erfüllt ist.

In (ii) machst du es genau umgekehrt: Bedingungen für Untergruppe voraussetzen, und daraus dann die Bedingungen für eine Äquivalenzrelation folgern.

Viele Grüße,
Marc

Bezug
                
Bezug
Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:08 So 05.12.2004
Autor: Marc

Lieber Julius!

> Wenn die Aufgabe exakt so lautete, dann ist sie falsch
> gestellt.
>  
> Wenn [mm]U[/mm] nur als nichtleere Teilmenge vorausgesetzt wird,
> dann ist [mm]\sim[/mm] im Allgemeinen keine Äquivalenzrelation.
>  
> Beispiel:
>  
> [mm](\IR\setminus\{0\}, \cdot)[/mm]  ,    [mm]U=\{2\}[/mm].
>  
> Hier ist [mm]\sim[/mm] etwa nicht reflexiv.

Und U ist keine Untergruppe. Was ist also damit widerlegt?

Liebe Grüße,
Marc

Bezug
                        
Bezug
Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:21 So 05.12.2004
Autor: Julius

Lieber Marc!

Ich habe die Aufgabe falsch gelesen und diesen Satz

> Zeige, dass die folgenden Aussagen äquivalent sind:

überlesen. Von daher dachte ich, dass (i) und (ii) zu zeigen wären und nicht etwa deren Äquivalenz.

[sorry]

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]