www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionGruppen Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Induktion" - Gruppen Beweis
Gruppen Beweis < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppen Beweis: Korrektur
Status: (Frage) beantwortet Status 
Datum: 09:58 Sa 30.10.2010
Autor: Julia_stud

Aufgabe
Man beweise für eine abelsche Gruppe G: $ [mm] a_{1}*a_{2}*...*a_{n}=a_{\pi(1)}*a_{\pi(2)}*...*a_{\pi(n)}, a_{i} \in [/mm] G, [mm] \pi \in S_{n}. [/mm] $

Ich bin mir nicht sicher ob mein Beweis stimmt, wäre nett wenn jemand den Beweis mal durchschaut:

IV: Die Gruppe G ist abelsch.

IA: [mm] a_{1}*a_{2} [/mm] = [mm] a_{\pi(1)}*a_{\pi(2)} [/mm] für [mm] a_{i} \in [/mm] G, [mm] \pi \in S_{n} [/mm] gilt nach IV

IS:  
[mm] a_{1}*a_{2}*...*a_{n}=a_{\pi(1)}*a_{\pi(2)}*...*a_{\pi(n)} [/mm]
[mm] \produkt_{i=1}^{n+1}a_{i} [/mm] = [mm] \produkt_{i=1}^{n+1}a_{\pi(i)} [/mm]
[mm] \produkt_{i=1}^{n}a_{i}*a_{n+1} [/mm] = [mm] \produkt_{i=1}^{n}a_{\pi(i)}*a_{\pi(n+1)} [/mm]

Einsetzen von IA:

[mm] $\produkt_{i=1}^{n}a_{i}*a_{n+1} [/mm] = [mm] \produkt_{i=1}^{n}a_{i}*a_{\pi(n+1)}$ [/mm]

...reicht dies?


Vielen Dank, Julia

        
Bezug
Gruppen Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:07 Sa 30.10.2010
Autor: felixf

Moin Julia!

> Man beweise für eine abelsche Gruppe G:
> [mm]a_{1}*a_{2}*...*a_{n}=a_{\pi(1)}*a_{\pi(2)}*...*a_{\pi(n)}, a_{i} \in G, \pi \in S_{n}.[/mm]
>  
> Ich bin mir nicht sicher ob mein Beweis stimmt, wäre nett
> wenn jemand den Beweis mal durchschaut:
>  
> IV: Die Gruppe G ist abelsch.
>  
> IA: [mm]a_{1}*a_{2}[/mm] = [mm]a_{\pi(1)}*a_{\pi(2)}[/mm] für [mm]a_{i} \in[/mm] G,
> [mm]\pi \in S_{n}[/mm] gilt nach IV
>  
> IS:  
> [mm]a_{1}*a_{2}*...*a_{n}=a_{\pi(1)}*a_{\pi(2)}*...*a_{\pi(n)}[/mm]

Vorsicht! Jetzt ist [mm] $\pi$ [/mm] ein Element aus [mm] $S_{n+1}$ [/mm] und nicht mehr aus [mm] $S_n$. [/mm] Das bedeutet, du kannst die Induktionsvoraussetzung gar nicht anwenden!

>  [mm]\produkt_{i=1}^{n+1}a_{i}[/mm] =
> [mm]\produkt_{i=1}^{n+1}a_{\pi(i)}[/mm]

Das musst du zeigen.

>  [mm]\produkt_{i=1}^{n}a_{i}*a_{n+1}[/mm] =
> [mm]\produkt_{i=1}^{n}a_{\pi(i)}*a_{\pi(n+1)}[/mm]
>  
> Einsetzen von IA:
>  
> [mm]\produkt_{i=1}^{n}a_{i}*a_{n+1} = \produkt_{i=1}^{n}a_{i}*a_{\pi(n+1)}[/mm]
>  
> ...reicht dies?

Nein, es ist sogar falsch, da fuer [mm] $\pi \in S_{n+1}$ [/mm] nicht gelten muss [mm] $\{ 1, \dots, n \} [/mm] = [mm] \{ \pi(1), \dots, \pi(n) \}$. [/mm]


Hattet ihr, dass man jede Permutation als Verkettung von Transpositionen schreiben kann? Damit kannst du es recht einfach beweisen.

LG Felix


Bezug
                
Bezug
Gruppen Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:14 Sa 30.10.2010
Autor: Julia_stud


> Vorsicht! Jetzt ist [mm]\pi[/mm] ein Element aus [mm]S_{n+1}[/mm] und nicht
> mehr aus [mm]S_n[/mm]. Das bedeutet, du kannst die
> Induktionsvoraussetzung gar nicht anwenden!
>  
> >  [mm]\produkt_{i=1}^{n+1}a_{i}[/mm] =

> > [mm]\produkt_{i=1}^{n+1}a_{\pi(i)}[/mm]
>  
> Das musst du zeigen.
>  
> >  [mm]\produkt_{i=1}^{n}a_{i}*a_{n+1}[/mm] =

> > [mm]\produkt_{i=1}^{n}a_{\pi(i)}*a_{\pi(n+1)}[/mm]
>  >  
> > Einsetzen von IA:
>  >  
> > [mm]\produkt_{i=1}^{n}a_{i}*a_{n+1} = \produkt_{i=1}^{n}a_{i}*a_{\pi(n+1)}[/mm]
>  
> >  

> > ...reicht dies?
>  
> Nein, es ist sogar falsch, da fuer [mm]\pi \in S_{n+1}[/mm] nicht
> gelten muss [mm]\{ 1, \dots, n \} = \{ \pi(1), \dots, \pi(n) \}[/mm].
>  
>
> Hattet ihr, dass man jede Permutation als Verkettung von
> Transpositionen schreiben kann? Damit kannst du es recht
> einfach beweisen.

Nein diesen Satz hatten wir leider nicht.

Wir sollen in der Aufgabe von 2 Umordnungen auf endlich viele Umordnungen schließen - als Tipp wurde uns ein Induktions-Beweis empfohlen.


Bezug
                        
Bezug
Gruppen Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 Sa 30.10.2010
Autor: rainerS

Hallo Julia!

> > Vorsicht! Jetzt ist [mm]\pi[/mm] ein Element aus [mm]S_{n+1}[/mm] und nicht
> > mehr aus [mm]S_n[/mm]. Das bedeutet, du kannst die
> > Induktionsvoraussetzung gar nicht anwenden!
>  >  
> > >  [mm]\produkt_{i=1}^{n+1}a_{i}[/mm] =

> > > [mm]\produkt_{i=1}^{n+1}a_{\pi(i)}[/mm]
>  >  
> > Das musst du zeigen.
>  >  
> > >  [mm]\produkt_{i=1}^{n}a_{i}*a_{n+1}[/mm] =

> > > [mm]\produkt_{i=1}^{n}a_{\pi(i)}*a_{\pi(n+1)}[/mm]
>  >  >  
> > > Einsetzen von IA:
>  >  >  
> > > [mm]\produkt_{i=1}^{n}a_{i}*a_{n+1} = \produkt_{i=1}^{n}a_{i}*a_{\pi(n+1)}[/mm]
>  
> >  

> > >  

> > > ...reicht dies?
>  >  
> > Nein, es ist sogar falsch, da fuer [mm]\pi \in S_{n+1}[/mm] nicht
> > gelten muss [mm]\{ 1, \dots, n \} = \{ \pi(1), \dots, \pi(n) \}[/mm].
>  
> >  

> >
> > Hattet ihr, dass man jede Permutation als Verkettung von
> > Transpositionen schreiben kann? Damit kannst du es recht
> > einfach beweisen.
>  
> Nein diesen Satz hatten wir leider nicht.
>  
> Wir sollen in der Aufgabe von 2 Umordnungen auf endlich
> viele Umordnungen schließen - als Tipp wurde uns ein
> Induktions-Beweis empfohlen.

Das geht auch, nur ist dein Induktionsschritt nicht ganz richtig. Genauer gesagt, du hast nur einen Spezialfall bewiesen. Du schriebst:

  [mm]\produkt_{i=1}^{n}a_{i}*a_{n+1} = \produkt_{i=1}^{n}a_{\pi(i)}*a_{\pi(n+1)}[/mm]

Wie Felix schon schrieb, stimmt das zunächst mal nur, wenn [mm] $\pi(n+1)=n+1$ [/mm] ist, denn dann ist [mm] $a_{\pi(n+1)}=a_{n+1}$ [/mm] .

(Analog könntest du den Spezialfall [mm] $\pi(1)=1$ [/mm] beweisen:

[mm]\produkt_{i=1}^{n+1}a_{\pi(i)} = a_{\pi(1)}*\produkt_{i=2}^{n+1}a_{\pi(i)} = a_1 * \produkt_{i=2}^{n+1}a_{\pi(i)} [/mm],

und da nach IV [mm] $\produkt_{i=2}^{n+1}a_{\pi(i)} [/mm] = [mm] \produkt_{i=2}^{n+1}a_{i}$ [/mm] ist (ist dir klar, warum das gilt?), folgt die Behauptung.)

Du kannst jetzt versuchen, den allgemeinen Fall auf diesen Spezialfall zurückzuführen. Nimm also an, dass es ein j gibt mit [mm] $\pi(n+1)=j\not=n+1$. [/mm] Tipp: Benutze zuächst die IV, um [mm] $a_{j}$ [/mm] an die zweitletzte Position zu bringen.

Viele Grüße
   Rainer


Bezug
                                
Bezug
Gruppen Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:02 So 31.10.2010
Autor: Julia_stud

Ich habe verstanden, welchen Fehler ich gemacht habe:
Durch die Permutatuon weiß ich nicht an welcher Stelle [mm] a_{\pi (i)} [/mm] mit der Wertigkeit [mm] a_{n+1} [/mm] in der Permutation steht und daher kann ich es nicht mit [mm] a_{n+1} [/mm] gleichsetzen


Aber mit dem Tip kann ich nichts anfangen, wenn ich die Spezialfälle beweise kann ich von diesen nicht auf einen allgemeinen Beweis folgern...wie kann ich also möglichst elegant zeigen das bei der Multiplikation die reihenfolge irrelevant ist?

Bezug
                                        
Bezug
Gruppen Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:18 Mo 01.11.2010
Autor: rainerS

Hallo Julia!

> Ich habe verstanden, welchen Fehler ich gemacht habe:
>  Durch die Permutatuon weiß ich nicht an welcher Stelle
> [mm]a_{\pi (i)}[/mm] mit der Wertigkeit [mm]a_{n+1}[/mm] in der Permutation
> steht und daher kann ich es nicht mit [mm]a_{n+1}[/mm] gleichsetzen

Genau.

> Aber mit dem Tip kann ich nichts anfangen, wenn ich die
> Spezialfälle beweise kann ich von diesen nicht auf einen
> allgemeinen Beweis folgern...wie kann ich also möglichst
> elegant zeigen das bei der Multiplikation die reihenfolge
> irrelevant ist?

Ich vermute, du hast folgende Tatsache noch nicht richtig verstanden: die Induktionsvoraussetzung besagt, dass eine beliebige Permutation von n Faktoren zum selben Ergebnis der Multiplikation führt. Dass heisst z.B. dass du in der Gleichung

[mm] \produkt_{i=1}^{n}a_{i}\cdot{}a_{n+1} = \produkt_{i=1}^{n}a_{\pi(i)}\cdot{}a_{\pi(n+1)} [/mm]

die Faktoren des Produkts

[mm] \produkt_{i=1}^{n}a_{\pi(i)} [/mm]

beliebig permutieren darfst. Du kannst also die ersten n Faktoren nach IV so umordnen, dass der letzte dieser n Faktoren gerade [mm] $a_{n+1}$ [/mm] ist, also im gesamten Produkt aus $n+1$ Faktoren an vorletzter Stelle steht.

Da du die Aussage bereits für den Fall, dass [mm] $a_{n+1}$ [/mm] an letzter Stelle steht, bewiesen hast, musst du nur noch den Fall [mm] "$a_{n+1}$ [/mm] steht an vorletzter Stelle" auf den bereits bewiesenen Spezialfall zurückführen.

  Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]