Gruppenhom.und Isomorphie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei G := { [mm] \pmat{ a & c \\ 0 & b }| a,b,c\in \IR, [/mm] ab [mm] \not=0 [/mm] }
Z.z. Die Abbildung [mm] \phi: [/mm] G [mm] \to (\IR [/mm] \ {0} x [mm] \IR [/mm] \ {0} ,*), [mm] \pmat{ a & c \\ 0 & b } \mapsto [/mm] (a,b) ist ein Gruppenhomomorphismus, dessen Kern isomorph zu [mm] (\IR,+) [/mm] ist. |
Hallo,
die Aufgabe habe ich soweit gelöst.
Den Gruppenhomomorphismus habe ich so gezeigt:
Zu zeigen:
[mm] \phi(\pmat{ a & c \\ 0 & b }\pmat{ d & f \\ 0 & e }) [/mm] = [mm] \phi (\pmat{ a & c \\ 0 & b })* \phi(\pmat{ d & f \\ 0 & e })
[/mm]
Links habe ich die beiden Matrizen ausmultipliziert, und dann [mm] \phi [/mm] drauf angewendet, ergibt also: (ad,be)
Rechts erhalte ich (a,b)*(d,e)
Nun ist auf [mm] \IR [/mm] \ {0} x [mm] \IR [/mm] \ {0} das Produkt definiert als:
(g,h)*(g',h')=(gg',hh')
Also stehen links und rechts das gleiche. Fertig.
Jetzt muss ich zeigen, dass ker [mm] \phi \cong (\IR,+) [/mm] ist.
ker [mm] \phi [/mm] ={ [mm] M:=\pmat{ a & c \\ 0 & b }\in [/mm] G| [mm] \phi(M)=(a,b)=(1,1) [/mm] }
Wie zeige ich jetzt, dass die Isomorphie zu [mm] (\IR,+) [/mm] gilt? Muss ich einen weiteren Hom., die bijektiv ker [mm] \phi \to (\IR,+) [/mm] defnieren?
Danke für die Hilfe!
Milka
|
|
|
|
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Hallo Milka,
zeige, daß $\operatorname{ker}(\phi) = \{\pmat{1 & r \\ & 0 & 1} \mid r \in \IR\}$ gilt. Multiplizier mal zwei Matrizen aus dem Kern; dann kommst Du sicher auf einen passenden Homomorphismus nach $(\IR, +)$.Für welche $r \in \IR$ wird das Bild der Matrix $\pmat(1 & r \\ 0 & 1}$ 0?
Hth
zahlenspieler
|
|
|
|
|
Hallo,
> zeige, daß [mm]\operatorname{ker}(\phi) = \{\pmat{1 & r \\ & 0 & 1} \mid r \in \IR\}[/mm]
> gilt. Multiplizier mal zwei Matrizen aus dem Kern; dann
> kommst Du sicher auf einen passenden Homomorphismus nach
> [mm](\IR, +)[/mm].Für welche [mm]r \in \IR[/mm] wird das Bild der Matrix
> [mm]\pmat(1 & r \\ 0 & 1}[/mm] 0?
zunächst einmal danke für deine Hilfe. Bloß versteh ich nicht ganz, was du damit meinst. Ich hab versucht, deinen Tipps zu folgen, und habe nun folg. gemacht:
Der Kern von [mm] \phi [/mm] ist ja definiert als ker [mm] \phi= [/mm] { [mm] \pmat{1 & r \\ 0 & 1} \mid [/mm] r [mm] \in \IR\}
[/mm]
Nun habe ich zwei MAtrizen aus ker [mm] \phi [/mm] genommen und miteinander multipliziert:
[mm] \pmat{ 1 & r \\ 0 & 1 }\pmat{ 1 & s \\ 0 & 1 } [/mm] = [mm] \pmat{ 1 & r+s \\ 0 & 1 }
[/mm]
Wie bekomme ich nun einen passenden Homomorphismus nach [mm] (\IR,+)? [/mm] Ich versteh nicht ganz, was du mir da gesagt hast...
Und dann hast du gefragt, für welche r das Bild der MAtrix 0 ist. Meine Antwort, für gar kein r, weil die [mm] \phi [/mm] ja auf (a,b) abbildet, also genau die Elemente auf der Diagonalen der MAtrix, und r liegt doch rechts oben auf der Nebendiagonale. Von daher versteh ich nicht, was der Zweck der Frage ist.
Vielen Dank!
Milka
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:27 Di 31.10.2006 | Autor: | ron |
Hallo,
zunächst auf die Frage am Ende: Üblicherweise bezeichnet der Kern einer Abbildung alle Elemente, die durch die Abbildung auf die Null abgebildet werden (als neutrales Element). Hier ist der Bildbereich aber ohne (0,0) definiert, somit bleibt für den Kern die Abbildung auf das Neutrale Element (1,1) in [mm] \IR [/mm] / 0 x [mm] \IR [/mm] / 0. Laut der Textbeschreibung.
Wie sehen die Elemente in ( [mm] \IR [/mm] , +) aus: Ist die additive Gruppe in [mm] \IR
[/mm]
Zur Isomorphie reicht also einen Isomorphismus (bijektiver Gruppenhomomorphismus) anzugeben.
[mm] \lambda [/mm] : [mm] (Kern_{\phi}, [/mm] *) [mm] \rightarrow (\IR [/mm] , +)
[mm] \lambda(\pmat{1 & r \\ 0 & 1} [/mm] * [mm] \pmat{1 & s \\ 0 & 1}) [/mm] = [mm] \lambda(\pmat{1 & r \\ 0 & 1}) [/mm] + [mm] \lambda(\pmat{1 & s \\ 0 & 1})
[/mm]
[mm] \lambda (\pmat{1 & r \\ 0 & 1}) [/mm] = r mit r [mm] \in \IR [/mm] erfüllt diese Forderungen!
Hoffe etwas helfen zu können.
Gruß
Ron
|
|
|
|