www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraGruppenhomomorphismen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Gruppenhomomorphismen
Gruppenhomomorphismen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenhomomorphismen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:20 Di 12.12.2006
Autor: megakampfzwerg

Aufgabe
(a) Seien G und H endliche Gruppen teilerfremder Ordnung. Zeigen Sie, dass                     es genau einen Gruppenhomomorphismus f: G->H gibt.
(b) Bestimmen Sie alle Gruppenhomomorphismen g: (Z/nZ,+)->(Z/mZ,+) für [mm] m,n\in [/mm] {6,7,9}.

Hallöle!

zu(a)
Habe mit dieser Aufgabe so meine Probleme....
Hab mir bis her überlegt, dass ggT(|G|,|H|)=1, teilerfremder Ordnung. Und Damit dies gilt muss |G| [mm] \not= [/mm] |H| sein, denn wären die Gruppen gleich groß so wäre das ggT=|G| oder ggT=|H|.
Aber in fern hilft mir das weiter, um zu zeigen,dass es nur einen Guppenhomomorphismus gibt?

zu(b)
Eine Möglich keit ist es die Gruppenhomomorphismen druch ausprobieren zu ermitteln. Aber es gibt doch bestimmt eine elegantere Art diese zu fingen, oder?

Danke!
Christina

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Gruppenhomomorphismen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Di 12.12.2006
Autor: zahlenspieler

Hallo Christina,
> (a) Seien G und H endliche Gruppen teilerfremder Ordnung.
> Zeigen Sie, dass                     es genau einen
> Gruppenhomomorphismus f: G->H gibt.
>  (b) Bestimmen Sie alle Gruppenhomomorphismen g:
> (Z/nZ,+)->(Z/mZ,+) für [mm]m,n\in[/mm] {6,7,9}.
>  Hallöle!
>  
> zu(a)
>  Habe mit dieser Aufgabe so meine Probleme....
>  Hab mir bis her überlegt, dass ggT(|G|,|H|)=1,
> teilerfremder Ordnung. Und Damit dies gilt muss |G| [mm]\not=[/mm]
> |H| sein, denn wären die Gruppen gleich groß so wäre das
> ggT=|G| oder ggT=|H|.
> Aber in fern hilft mir das weiter, um zu zeigen,dass es nur
> einen Guppenhomomorphismus gibt?

Naja, das noch nicht; aber wenn $U$ Untergruppe von $H$ ist, dann sind auch $|U|$ und $|G|$ teilerfremd. Denk mal in Richtung "Satz von Lagrange" und "Homomorphiesatz für Gruppen" :-).

>  
> zu(b)
>  Eine Möglich keit ist es die Gruppenhomomorphismen druch
> ausprobieren zu ermitteln. Aber es gibt doch bestimmt eine
> elegantere Art diese zu fingen, oder?

Oh ja, nämlich Teil a) der Aufgabe :-).
Mfg
zahlenspieler

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]