www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperGruppenhomomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Gruppenhomomorphismus
Gruppenhomomorphismus < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenhomomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:53 So 28.11.2010
Autor: MatheStudi7

Aufgabe
Sei f : G [mm] \to [/mm] H ein Gruppenhomomorphismus. Sei U [mm] \le [/mm] H eine Untergruppe.
Zeigen Sie, dass das Urbild von U unter f, also [mm] f^{-1}(U), [/mm] eine Untergruppe von G ist.

Hi,


Ich habe mir mal aufgeschrieben, was ich alles dazu weiß und was evtl. nützlich sein könnte:
[mm] f(e_{G})=e_{H}=e_{U}, [/mm] allerdings weiß ich nicht, ob [mm] e_{G} \in f^{-1}(U) [/mm]

Ker(f):= [mm] f^{-1}({e_{H}}) [/mm] = {a [mm] \in [/mm] G|f(a) = [mm] e_{H} [/mm] }, Ker(f) [mm] \le [/mm] G
(bringt mir das mit dem Ker(f) etwas? Ker(f) ist ja die Menge aller a [mm] \in [/mm] G, für die [mm] f(a)=e_{H}(=e_{U}) [/mm] gilt. [mm] e_{G} [/mm] wär ja so ein a. Wenn [mm] e_{G} [/mm] das einzige Element ist, welche diese Eigenschaft erfüllt, dann wüsst ich ja schonmal, dass [mm] f^{-1} [/mm] ein neutrales Element hat. Theoretisch könnten aber noch andere a [mm] \in [/mm] G diese Eigenschaft haben (,oder? ) )

Und ich weiß noch, da Gruppenhomom.: f(a*b) = f(a) [mm] \circ [/mm] f(b), a,b [mm] \in [/mm] G


Nun zum Beweis: ich überprüfe die Gruppenaxiome

(U1) Abgeschlossenheit
Seien a,b [mm] \in f^{-1}(U) \Rightarrow \exists [/mm] u,v [mm] \in [/mm] U: [mm] a=f^{-1}(u), b=f^{-1}(v). [/mm]
u [mm] \circ [/mm] v [mm] \in [/mm] U. a*b = [mm] f^{-1}(u) [/mm] * [mm] f^{-1}(v) [/mm] . So, jetzt kann ich ja aber nicht sagen, dass [mm] f^{-1}(u) [/mm] * [mm] f^{-1}(v) [/mm] = [mm] f^{-1}(u \circ [/mm] v), das gilt ja nur für f und nicht [mm] f^{-1}. \Rightarrow [/mm] weiß nicht, wie es weiter geht.

(U2) Neutrtrales Element
Das, was ich oben schon geschrieben habe: ich weiß zwar, dass [mm] f^{-1}(e_{H}=e_{U}) [/mm] = [mm] e_{G}. [/mm] Aber ob [mm] e_{G} [/mm] auch das neutrale Element in [mm] f^{-1} [/mm] weiß ich nicht.

(U3) Inverses Element.
Keine Idee :-(



Bin für jeden Tipp dankbar.


        
Bezug
Gruppenhomomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 So 28.11.2010
Autor: felixf

Moin!

> Sei f : G [mm]\to[/mm] H ein Gruppenhomomorphismus. Sei U [mm]\le[/mm] H eine
> Untergruppe.
>  Zeigen Sie, dass das Urbild von U unter f, also [mm]f^{-1}(U),[/mm]
> eine Untergruppe von G ist.
>  
>
> Ich habe mir mal aufgeschrieben, was ich alles dazu weiß
> und was evtl. nützlich sein könnte:
>  [mm]f(e_{G})=e_{H}=e_{U},[/mm] allerdings weiß ich nicht, ob [mm]e_{G} \in f^{-1}(U)[/mm]

Da [mm] $e_U \in [/mm] U$, ist doch [mm] $e_G \in f^{-1}(U)$ [/mm] per Definition von [mm] $f^{-1}(U)$! [/mm]

> Ker(f):= [mm]f^{-1}({e_{H}})[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= {a [mm]\in[/mm] G|f(a) = [mm]e_{H}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}, Ker(f)

> [mm]\le[/mm] G
> (bringt mir das mit dem Ker(f) etwas? Ker(f) ist ja die
> Menge aller a [mm]\in[/mm] G, für die [mm]f(a)=e_{H}(=e_{U})[/mm] gilt.

Der Kern ist [mm] $f^{-1}(\{ e_H \})$. [/mm] Du zeigst jetzt allgemeiner, dass nicht nur der Kern eine Untergruppe ist, sondern jedes Urbild einer Untergruppe von $H$.

> [mm]e_{G}[/mm] wär ja so ein a. Wenn [mm]e_{G}[/mm] das einzige Element ist,
> welche diese Eigenschaft erfüllt, dann wüsst ich ja
> schonmal, dass [mm]f^{-1}[/mm] ein neutrales Element hat.
> Theoretisch könnten aber noch andere a [mm]\in[/mm] G diese
> Eigenschaft haben (,oder? ) )

Das ist doch voellig egal. Du musst einfach zeigen, dass [mm] $e_G$ [/mm] in [mm] $f^{-1}(U)$ [/mm] liegt. Stichwort: Untergruppenkriterium.

> Und ich weiß noch, da Gruppenhomom.: f(a*b) = f(a) [mm]\circ[/mm]
> f(b), a,b [mm]\in[/mm] G
>  
>
> Nun zum Beweis: ich überprüfe die Gruppenaxiome
>  
> (U1) Abgeschlossenheit
>  Seien a,b [mm]\in f^{-1}(U) \Rightarrow \exists[/mm] u,v [mm]\in[/mm] U:
> [mm]a=f^{-1}(u), b=f^{-1}(v).[/mm]

Das ist Quark. $f$ ist i.A. nicht injektiv. Damit ist [mm] $f^{-1}(u)$ [/mm] bzw. [mm] $f^{-1}(v)$ [/mm] kein Element von $G$, sondern eine Teilmenge!

Du willst wohl schreiben: "Seien $a, b [mm] \in f^{-1}(U) \Rightarrow [/mm] f(a), f(b) [mm] \in [/mm] U$."

Wenn du jetzt $f(a)$ umbedingt $u$ und $f(b)$ umbedingt $v$ nennen willst, kannst du das gerne tun.

> u [mm]\circ[/mm] v [mm]\in[/mm] U. a*b = [mm]f^{-1}(u)[/mm] * [mm]f^{-1}(v)[/mm] . So, jetzt
> kann ich ja aber nicht sagen, dass [mm]f^{-1}(u)[/mm] * [mm]f^{-1}(v)[/mm] =
> [mm]f^{-1}(u \circ[/mm] v), das gilt ja nur für f und nicht [mm]f^{-1}. \Rightarrow[/mm]
> weiß nicht, wie es weiter geht.

So geht das auch nicht.

Du musst einfach zeigen: $f(a + b) [mm] \in [/mm] U$. Das bedeutet gerade $a + b [mm] \in f^{-1}(U)$. [/mm]

> (U2) Neutrtrales Element
>  Das, was ich oben schon geschrieben habe: ich weiß zwar,
> dass [mm]f^{-1}(e_{H}=e_{U})[/mm]

Das ist immer noch Quark! Das Urbild von [mm] $e_H$ [/mm] ist der Kern von $f$, und dieser enthaelt [mm] $e_U [/mm] = [mm] e_G$. [/mm]

> (U3) Inverses Element.
>  Keine Idee :-(

Benutze [mm] $f(a^{-1}) [/mm] = [mm] f(a)^{-1}$. [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]