www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesGruppenisomorphismus
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Gruppenisomorphismus
Gruppenisomorphismus < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenisomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:52 Mi 27.06.2012
Autor: Lu-

Aufgabe
Hallo
Ich habe eine Frage: Wie weißt man einen Gruppenisomorphismus nach?

Ein Gruppenisomorphismus ist ein bijektiver Gruppenhomomorphismus.

Ich habe nachgewiesen dass es sich bei deien Abbildungen um Gruppen handelt.
Nun ist zuzeigen, dass die Abbildung zwischen den beiden Gruppen bijektiv ist. Und was ist da noch zu zeigen?

Liebe Grüße

        
Bezug
Gruppenisomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Mi 27.06.2012
Autor: fred97


> Hallo
>  Ich habe eine Frage: Wie weißt man einen
> Gruppenisomorphismus nach?
>  Ein Gruppenisomorphismus ist ein bijektiver
> Gruppenhomomorphismus.
>  
> Ich habe nachgewiesen dass es sich bei deien Abbildungen um
> Gruppen handelt.

Eine Abbildung ist keine Gruppe !


>  Nun ist zuzeigen, dass die Abbildung zwischen den beiden
> Gruppen bijektiv ist. Und was ist da noch zu zeigen?

Seien  (G, [mm] \circ) [/mm] und (H, [mm] \star) [/mm] Gruppen.  Eine Funktion [mm] \phi\colon G\to [/mm] H heißt Gruppenhomomorphismus, wenn für alle Elemente x, y [mm] \in [/mm] G gilt:

   $ [mm] \phi(x \circ [/mm] y) = [mm] \phi(x) \star \phi(y). [/mm] $

FRED

>  
> Liebe Grüße


Bezug
                
Bezug
Gruppenisomorphismus: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:08 Mi 27.06.2012
Autor: Lu-

Aufgabe
Sei V ein n dimensionaler reeller Vektorraum und g: V [mm] \times [/mm] V [mm] ->\mathbb{R} [/mm]  eine symmetrische Billinearform mit SIgnatur (p,q) wobei p+q =n.
Weiters sei B eine geordnete Basis von V so dass [mm] [g]_B [/mm] =  [mm] \begin{pmatrix} I_p & \\ &- I_q \end{pmatrix} [/mm]
[mm] O_{p,q} [/mm] := [mm] \{A \in M_{n x n} (\mathbb{R}) : A^t \begin{pmatrix} I_p & \\ &- I_q \end{pmatrix} A = \begin{pmatrix} I_p & \\ &- I_q \end{pmatrix} \} [/mm]
ist eine Gruppe bez Matrizenmultiplikation. Zeige dass
O(V,g) [mm] \cong O_{p,q} [/mm] , [mm] \phi [/mm] <-> [mm] [\phi]_B [/mm]
einen Gruppeninsomrophismus ist

hallo,
Okay, ich poste mal meine aufgabe dazu. Weil ich nicht ganz weiterkomme.


Im Skript nachgeschlagen:
O(V,g) = [mm] \{\phi \in GL(v) :\forall v,w \in V : g(\phi(v), \phi(w))=g(v,w)\} [/mm]  bildet Gruppe bez Komposition von Abbildungen

(O(V,g)  bzgl Komposition von Abbildungen)
[mm] (O_{p,q} [/mm] bzgl Matrizenmultiplikation) eine gruppe
Eine Funktion F: O(V,g) [mm] ->O_{p,q} [/mm] heißt Gruppenisomorphimsmus,
wenn F bijektiv und
für alle [mm] \phi, \psi \in [/mm] O(V,g) gilt
[mm] F(\phi \circ \psi) [/mm] = [mm] F(\phi) F(\psi) [/mm]

Kannst du mir da nochmal weiterhelfen?
LG

Bezug
                        
Bezug
Gruppenisomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:49 Mi 27.06.2012
Autor: Lu-

keine eine idee??

LG

Bezug
                        
Bezug
Gruppenisomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 23:44 Mi 27.06.2012
Autor: ChopSuey

Hallo,

jetzt hast du alles aufgeschrieben, was du brauchst, um die Aufgabe zu lösen. Wo kommst du nicht weiter?

Bei der Bijektivität? Beim Nachweis, dass es sich um einen Gruppenhomomorphismus handelt?
Zeig mal, was du dir überlegt hast.

Viele Grüße
ChopSuey


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]