www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesGruppenoperationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Gruppenoperationen
Gruppenoperationen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenoperationen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:26 Do 21.05.2009
Autor: Heureka89

Also ich habe eine G-Menge M. [mm] G=GL_2, M=k^2 [/mm] x [mm] k^2, g*(m_1,m_2):= (gm_1, gm_2) [/mm]
Man soll nun die Bahnen, ein Repräsentantensystem und die Isotropiegruppe finden.

Meine Überlegungen:

Isotropiegruppe: [mm] E_2 [/mm]

Bahn: [mm] (a,b)\in [/mm] M   G(x,y) = { [mm] \summe_{k=1}^{2}a_{ik} x_k, \summe_{k=1}^{2}a_{ik} y_k [/mm] | [mm] A=(a_{ij}) \in [/mm] G }
Ich weiß nciht, wie man die Bahn besser aufschreiben kann. Und wie soll man ein Repräsentantensystem aufstellen, weil man braucht dazu ja je einen Vertreter aus einer Bahn?

        
Bezug
Gruppenoperationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Sa 23.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Gruppenoperationen: Idee / Rückfrage
Status: (Frage) überfällig Status 
Datum: 02:38 So 24.05.2009
Autor: zahlenspieler

Hallo Heureka89,
> Also ich habe eine G-Menge M. [mm]G=GL_2, M=k^2[/mm] x [mm]k^2, g*(m_1,m_2):= (gm_1, gm_2)[/mm]
>  
> Man soll nun die Bahnen, ein Repräsentantensystem und die
> Isotropiegruppe finden.
>  
> Meine Überlegungen:
>  
> Isotropiegruppe: [mm]E_2[/mm]

Warum? Nehmen wir mal an, die Matrix [mm]A \in G[/mm] hätte Eigenwert 1; dann gilt doch für jedes Paar von Eigenvektoren [mm] (v_1, v_2)[/mm] zum Eigenwert 1 [mm] A * (v_1,v_2)=(A\cdot v_1, A \cdot v_2)=(v_1, v_2)[/mm].

>  
> Bahn: [mm](a,b)\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

M   G(x,y) = { [mm]\summe_{k=1}^{2}a_{ik} x_k, \summe_{k=1}^{2}a_{ik} y_k[/mm]

> | [mm]A=(a_{ij}) \in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

G }

>  Ich weiß nciht, wie man die Bahn besser aufschreiben kann.
> Und wie soll man ein Repräsentantensystem aufstellen, weil
> man braucht dazu ja je einen Vertreter aus einer Bahn?

Wenn man dem Paar [mm](a,b) \in M[/mm] die Matrix [mm]\M_{a,b}\colon=begin{pmatrix} a \\ b \end{pmatrix}[/mm] zuordnet, wobei a die 1., b die 2. Zeile ist, dann ist [mm] a_{11}a +a_{12}b[/mm] die 1., [mm]a_{21}a +a_{22}b[/mm] die 2. Zeile des Matrizenprodukts [mm]A \cdot M_{a,b}, A=(a_ij)[/mm]. Wenn [mm]A \in G[/mm], dann ändert sich ja an der linearen (Un-)abhängigkeit der Zeilen von [mm]M_{a,b}[/mm] bzw. [mm] A \cdot M_{a,b}[/mm] nichts; also [mm] M_{a,b} \in G \gdw a,b \mbox{ sind linear unabhängig}[/mm].
Gruß
zahlenspieler

Bezug
                
Bezug
Gruppenoperationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:21 Do 28.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]