www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraGruppenring halbeinfach
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Gruppenring halbeinfach
Gruppenring halbeinfach < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenring halbeinfach: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:51 So 24.01.2016
Autor: UniversellesObjekt

Sei $k$ ein halbeinfacher (möglicherweise nichtkommutativer) Ring und $G$ eine endliche Gruppe, deren Ordnung eine Einheit in $k$ ist. Dann ist der Gruppenring $k[G]$ wieder halbeinfach.

[Beweis: Sei $M$ ein $k[G]$-Modul. Nach der universellen Eigenschaft ist das dasselbe, wie ein $k$-Modul $M'$ mit $G$-Wirkung; hierbei ist $M'$ durch den unterliegenden $k$-Modul von $M$ gegeben. Untermoduln von $M$ entsprechen $G$-invarianten Untermoduln von $M'$. Sei [mm] $N\le [/mm] M$ ein Untermodul. Da $k$ halbeinfach ist, spaltet die Einbettung [mm] $N'\hookrightarrow [/mm] M'$, etwa durch eine $k$-lineare Projektion $p'$. Durch Durchschnittsbildung

[mm] $p=\frac{1}{\operatorname{ord}G}\sum_{g\in G}g^{-1}p'g$ [/mm]

erhält man eine $k[G]$-lineare Abbildung, welche die Einbettung von $k[G]$-Moduln [mm] $N\hookrightarrow [/mm] M$ spaltet.]

Frage: Ist meine Voraussetzung eine notwendige Bedingung dafür, dass $k[G]$ halbeinfach ist?

Liebe Grüße,
UniversellesObjekt

        
Bezug
Gruppenring halbeinfach: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Mi 27.01.2016
Autor: hippias

Auf die schnelle ist dies meiner Einschätzung nach notwendig. Ich betrachte den $k$-Homo. [mm] $\phi:k[G]\to [/mm] k$, der [mm] $g\in [/mm] G$ auf $1$ abbildet, dessen Kern ein $G$-Modul ist. Ich meine, sein $G$-Komplement ist [mm] $k(\sum_{g\in G} [/mm] g)$. Da [mm] $\phi$ [/mm] surjektiv ist, folgt, dass $|G|1$ in $k$ invertierbar ist.

Um zu zeigen, dass auch $k$ halbeinfach ist, würde ich den Untermodul [mm] $J(\sum_{g\in G} g)\leq [/mm] k[G]$, wobei $J$ ein Ideal von $k$ ist, und sein Komplement betrachten.



Bezug
        
Bezug
Gruppenring halbeinfach: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mi 27.01.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]