HN ist Untergruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:30 Fr 30.03.2007 | Autor: | Hoschi78 |
Hallo
Nachdem ich mit diesem Forum so gute Erfahrungen gemacht habe, stelle ich jetzt mal eine (mir eher) peinliche Frage. Oftmals scheitert es bei mir gar nicht so sehr am Verständnis, als vielmehr daran, dass ich nicht weiss, ob meine Lösung formal richtig ist.
Dazu hier ein konkretes Beispiel:
Beim Beweis des ersten Isomorphiesatzes ist zunächst folgendes zu zeigen:
[mm] G [/mm] Gruppe,
[mm] H [/mm] Untergruppe,
[mm] N [/mm] Normalteiler
[mm] \Rightarrow HN [/mm] Untergruppe.
Um das zu beweisen, muss gezeigt werden:
Die Untergruppe ist nicht leer
i) Das neutrale Element der Gruppe ist auch Element der Untergruppe
ii) [mm] a,b \in HN \Rightarrow ab \in HN [/mm]
iii) [mm] a \in HN \Rightarrow a^{-1} \in HN [/mm]
zu i) Da H und N Untergruppen von G sind, gilt:
[mm] e \in H [/mm]
[mm] e \in N [/mm]
[mm] \Rightarrow ee=e \in HN [/mm]
Außerdem ist HN [mm] \not= \emptyset [/mm]
zu ii) Sei [mm] a,b \in HN [/mm]
[mm] \Rightarrow \exists\quad u_1, u_2 \in H [/mm] und [mm] \exists\quad n_1, n_2 \in N [/mm] mit [mm] a=u_1n_1 [/mm] und [mm] b = u_2n_2 [/mm]
[mm] \Rightarrow ab = u_1n_1u_2n_2 \overset{\text{N Normalteiler in G}}{=} u_1u_2n_1n_2 [/mm]
da [mm] u_1, u_2 \in H \Rightarrow u_1u_2 \in H [/mm] und
[mm] n_1,n_2 \in N \Rightarrow n_1n_2 \in N [/mm]
[mm] \Rightarrow u_1u_2n_1n_2 \in HN [/mm]
Zu iii) Sei [mm] a \in HN
\Rightarrow \exists\quad u \in H [/mm] und [mm] \exists\quad n \in N [/mm] mit [mm] un = a [/mm]
Es gilt: [mm] e = ee = uu^{-1}nn^{-1} \overset{\text{N Normalteiler in G}}{=} u^{-1}n^{-1}un=a^{-1}a [/mm]
[mm] \Rightarrow a^{-1} \in HN [/mm]
Und jetzt wüßt ich gern: Kann man das so schreiben, oder ist das völliger Unsinn?
Vielen Dank
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:40 Sa 31.03.2007 | Autor: | unknown |
Hallo,
> zu ii) Sei [mm]a,b \in HN[/mm]
> [mm]\Rightarrow \exists\quad u_1, u_2 \in H[/mm]
> und [mm]\exists\quad n_1, n_2 \in N[/mm] mit [mm]a=u_1n_1[/mm] und [mm]b = u_2n_2[/mm]
>
> [mm]\Rightarrow ab = u_1n_1u_2n_2 \overset{\text{N Normalteiler in G}}{=} u_1u_2n_1n_2[/mm]
Die Idee ist richtig. Allerdings gilt nicht unbedingt [mm] $n_1 u_2 [/mm] = [mm] u_2 n_1$. [/mm] Stattdessen hat man nur [mm] $n_1 u_2 \in u_2 [/mm] N$. Kleines Beispiel: $G = [mm] S_3$ [/mm] und $N = [mm] A_3$. [/mm] Seien [mm] $u_2 [/mm] = [mm] (2\;3)$ [/mm] und [mm] $n_1 [/mm] = [mm] (1\;3)(2\;3) \in A_3$. [/mm] Dann ist [mm] $u_2 n_1 [/mm] = [mm] (1\;2) \neq (1\;3) [/mm] = [mm] n_1 u_2$. [/mm] Aber es gilt [mm] $u_2 n_1 [/mm] = [mm] (1\;2) (2\;3) u_2$ [/mm] mit [mm] $(1\;2)(2\;3) \in A_3$.
[/mm]
> Zu iii) Sei [mm]a \in HN
\Rightarrow \exists\quad u \in H[/mm] und
> [mm]\exists\quad n \in N[/mm] mit [mm]un = a[/mm]
> Es gilt: [mm]e = ee = uu^{-1}nn^{-1} \overset{\text{N Normalteiler in G}}{=} u^{-1}n^{-1}un=a^{-1}a[/mm]
>
> [mm]\Rightarrow a^{-1} \in HN[/mm]
Das hier verstehe ich nicht ganz. Wieso ist [mm] $uu^{-1}nn^{-1} [/mm] = [mm] u^{-1}n^{-1}un$, [/mm] wieso ist [mm] $a^{-1} [/mm] = [mm] u^{-1} n^{-1}$ [/mm] und warum folgt aus $a [mm] a^{-1} [/mm] = e$ denn $a [mm] \in [/mm] HN$? [mm] ($aa^{-1} [/mm] = e$ gilt ja sowieso für alle $a [mm] \in [/mm] G$).
Versuch's mal so: Du solltest wissen, daß [mm] $(un)^{-1} [/mm] = [mm] n^{-1} u^{-1}$. [/mm] Finde heraus, warum das in $HN$ ist!
Hoffe, das hilft.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:27 Sa 31.03.2007 | Autor: | Hoschi78 |
Vielen Dank für den Tipp, das hat mir schonmal sehr weitergeholfen, eine Frage bleibt allerdings noch:
Der Beweis funktioniert, wenn man annimmt, dass [mm] $(un)^{-1} [/mm] = [mm] n^{-1} u^{-1}$. [/mm] Ich habe versucht das zu beweisen, vielleicht stehe ich einfach mal wieder auf dem Schlauch, aber ich komme nicht drauf....
Vielen Dank auf jeden Fall
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:11 Sa 31.03.2007 | Autor: | moudi |
Hallo Hoschi
Dass letzte folgt aus der Eindeutigkeit des inversen Elements bez. der Gruppenmultiplikation (und dem Assoziativgesetz), denn
[mm] $(u^{-1}n^{-1})(nu)=u^{-1}(n^{-1}n)u=u^{-1}u=e$.
[/mm]
Da [mm] $u^{-1}n^{-1}$ [/mm] multipliziert mit $nu$ das Neutralelement ergibt, muss es das Inverse von $nu$ sein.
mfG Moudi
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:07 So 01.04.2007 | Autor: | Hoschi78 |
Nochmals vielen Dank, ja da hätte man drauf kommen können...
|
|
|
|