www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Halbwertszeit mit Logarithmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Halbwertszeit mit Logarithmen
Halbwertszeit mit Logarithmen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Halbwertszeit mit Logarithmen: Frage
Status: (Frage) beantwortet Status 
Datum: 15:34 Di 01.03.2005
Autor: Taschentuch

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Wir sollen als Hausaufgabe die Halbwertszeit mit Logarithmen ausrechnen...
Die Formel lautet:
0,5 * a *  = a * [mm] b^{x+h} [/mm]

Folgende AUfgaben kann ich lösen, denn da muss ich das ja nur einsetzen : x [mm] \mapsto [/mm]  3 * [mm] \bruch{1}{8}^{x+h} [/mm]
das ist ja dann
0,5 * 3 * [mm] \bruch{1}{8}^{x} [/mm] = 3 * [mm] \bruch{1}{8}^{x+h} [/mm]       \ : 3* [mm] \bruch{1}{8}^{x} [/mm]
0,5 = [mm] \bruch{1}{8}^{h} [/mm]
[mm] log_{10} [/mm] 0,5 : [mm] log_{10} \bruch{1}{8} [/mm] = h
h  [mm] \approx [/mm] 0,3

Das kann ich. Jetzt sind aber andere angaben da. z.B
Anfangsbestand: 8 ; prozentuale Abnahmerate: 6% pro Tag
oder
Anfangsbestand : a ; Abnahmefaktor: 0,65 pro Stunde

Und da weiß ich echt nicht, wie ich das machen soll... Wäre nett, wenn ihr mir helfen könntet!
Danke
Julia

        
Bezug
Halbwertszeit mit Logarithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Di 01.03.2005
Autor: searchgirl

Hi Julia,

also zu deiner Frage.
erstmal ist es ja eine exponentialfunktion und hat die allgemeine gleichung
so, wie ich es richtig verstanden habe, ist a = der jeweilige Bestand. also meinetwegen 8 und du weist das, dies eine Halbwertszeitaufgabe ist, sich also der Anfangsbestand a umd die Hälfte verrringert (also a*0,5) und dann heißt du in der 1. Aufgabe eine prozentuale Abnahme von 6% (also ist die Variable m, kann aber auch jede andere sein 0,94, da 1 (Normalwert - 0,06 (der Przentwert) glecih 0,94 ergibt).
So, wenn ich nun deine Frage richtig verstanden habe, soll die Zeit errechnet werden, in der sich der Anfangsbestand von 8 sich auf die Hälfte bei einer Abnahemrate von 0.94, hat.

da benutzt du einfach die Formel:
y= a [mm] *c^x [/mm]
y = 0,5 *8 = 4
a= 8
c = 0,94

gesucht x

durch einsetzen ergibt sich
4 = [mm] 8*0,94^x [/mm]     |:8
0,5 = [mm] 0,94^x [/mm]      |logarithmieren
lg0,5 = xlg0,94   |:lg0,94
x= 11,202

=> also der Anfansbestand verringert sich um die Hälfte bei einer Abnahmerate von 6% am Tag in ~11,2 Tagen.

bei der zweiten Aufgabe , wo der Aufnahmebestand gleich a ist, und der Abnahmefaktor 0,65 (pro Stunde) ist, setzt du das auch nur in die Gleichung ein und erhälst:
[mm] 0,5*a=a*0,65^x [/mm]  |:a
0,5 = [mm] 0,65^x [/mm]        |logar.
lgo,5 = xlg0,65     |:lg0,65
x= 1,609

also ergibt sich, dass sich der Anfangsbestand a in 1,609 Stunden um die Hälfte bei einem Abnahmefaktor von 0,65 in 1,609 Stunden verringert.

So, ich hoffe, du findest ein bisschen zurecht, die Striche hinter den Gleichungen dienen dazu, den Rechenweg hinzuschreiben.

schöne grüße
searchgirl

Bezug
                
Bezug
Halbwertszeit mit Logarithmen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:12 Di 01.03.2005
Autor: Taschentuch

Danke.... ich glaub ich habs verstanden...

Bezug
                
Bezug
Halbwertszeit mit Logarithmen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:33 Di 01.03.2005
Autor: Taschentuch

Ich hab noch eine Frage: Wie kommst du auf die 0,94 bei der 1. Aufgabe?? Das ist das einzige was ich nicht verstehe... Wenn das nämlich die 6% von a (8) sein sollen, komme ich auf 0,48....


Bezug
                        
Bezug
Halbwertszeit mit Logarithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Di 01.03.2005
Autor: AgentSmith

Hi Taschentuch

Also auf die 0,94 kommt man folgendermaßen: Du weißt ja, das die Abnahme 6% beträgt pro Tag, dass also am Ende von jedem Tag noch 94% des Bestandes vom Vortag da sind, und 94% als Dezimalbruch ist eben 0,94.
Und bei dem Ausdsruck [mm] 0,94^{x} [/mm] bezeichnet x die Anzahl der Tage, da zu ja den Anfangswert x-mal mit 0,94 multiplizierst.

Hoffe mal, ich habs gut erklärt und es ist dir klargeworden

AgentSmith

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]