www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKomplexität & BerechenbarkeitHalteproblem- Entscheidbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Komplexität & Berechenbarkeit" - Halteproblem- Entscheidbarkeit
Halteproblem- Entscheidbarkeit < Komplex. & Berechnb. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Halteproblem- Entscheidbarkeit: ich versteh den beweis irgendw
Status: (Frage) beantwortet Status 
Datum: 07:27 Sa 31.12.2005
Autor: ehrlichbemuehter

Aufgabe
Ich verstehe das halteproblem nicht!

Betrachten Sie bitte folgenden beweis:

[Dateianhang nicht öffentlich]

folgendes verstehe ich (mal rückwaerts aufgedroeselt):
w  [mm] \not\in [/mm] K  [mm] \gdw [/mm] f'(w)=1
nur wie komme ich dann auf die absurde annahme dass
daraus folg:
[mm] \gdw M'=M_w [/mm] angesetzt auf w hält [mm] \gdw [/mm] w [mm] \in [/mm] K
???

ich glaube ich bringe da irgend etwas mit der entscheidbarkeit durcheinander, waere echt super wenn mir jemand zum neuen jahr der das halteproblem immanent verstanden hat was dazu erlaeutern koente

gruss
christian




Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
        
Bezug
Halteproblem- Entscheidbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:51 Sa 31.12.2005
Autor: mathiash

Hallo christian,

so schwer es einem auch fallen mag, dies am Anfang zu begreifen: Jede Aequivalenz
folgt direkt aus einer Definition oder Annahme, ist also elementar.

Gehen wir es durch:

[mm] \omega' \not\in [/mm] K          [mm] \Leftrightarrow [/mm]   (nach definition der partiellen Funktion f')
[mm] f'(\omega') [/mm] =1               [mm] \Leftrightarrow [/mm]   (nach Def. der Funktion f')
[mm] M'=M_{\omega'} [/mm] (das ist ja die Annahme, dass es solches [mm] M'=M_{\omega'} [/mm] fuer f' gibt)
haelt  auf Eingabe [mm] \omega' [/mm]  und gibt 1 aus  

[mm] \leftrightarrow (nach definition des halteproblems) \omega'\in K -Widerspruch. Also kann eben nicht die Funktion f' partiell rekursiv sein und somit auch nicht das Halteproblem entscheidbar. Wie man sieht: Auch und gerade Beweise, in denen jeder Schritt elementar ist, koennen es in sich haben. Ein besseres Beispiel hierfuer ist uebrigens der Rekursionssatz, zur Lektuere des selbigen kann man auf das textbuch von Rogers zurueckgreifen. Allen einen guten Start ins neue Jahr ! Mathias [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]