www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesHauptachsensysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Hauptachsensysteme
Hauptachsensysteme < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hauptachsensysteme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Do 14.05.2009
Autor: bonanza123

Aufgabe
Stellen sie die quadratische form in dem hauptaschsensystem dar. geben sie die neue orthonormalbasis und die transformationsmatrix an.

a) f(x) = [mm] 27(x_{1})^2 [/mm] - 10 [mm] x_{1} x_{2} [/mm] + 3 [mm] (x_{2})^2 [/mm] , x [mm] \in \IR{2} [/mm]

b) g(x) = [mm] 2(x_{1})^2 [/mm] + 8 [mm] x_{1} x_{2} [/mm] + 8 [mm] (x_{2})^2 [/mm] , x [mm] \in \IR{2} [/mm]

Hey, hoffentlich kann mir jemand helfen, knifflich ist b, da weiss ich nicht weiter!

zu a) habe ich die eigenwerte bestimmt 2 und 28 und die eigenvektoren!
Orthonormalbasis B = [mm] \bruch{1}{\wurzel[2]{26}} \pmat{ 1 & -5 \\ 5 & 1 } [/mm]
quadratische form bzgl. des hauptachsensystems :

{f(y)} = [mm] 2(y_{1})^2 [/mm] + 28 [mm] (y_{2})^2 [/mm]

aber was ist jetzt die Transformationsmatrix, ist damit die Drehmatrix gemeint [mm] B^T [/mm] *A*B??? kann mir da jemand weiter helfen.

zu b) ich habe die Matrix aufgestellt, also A

[mm] \pmat{ 2 & 4 \\ 4 & 8 } [/mm]

so dann habe ich die eigenwerte bestimmt, die sind 30 und 20, und die eigenvektoren, allerdings sind das bei mir beides nullvektoren und da weiss ich nicht recht weiter, ausserdem sind die vektoren von ALinear abh. ..... das irritiert mich etwas

gruss bonanza

        
Bezug
Hauptachsensysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 Do 14.05.2009
Autor: MathePower

Hallo bonanza123,

> Stellen sie die quadratische form in dem hauptaschsensystem
> dar. geben sie die neue orthonormalbasis und die
> transformationsmatrix an.
>  
> a) f(x) = [mm]27(x_{1})^2[/mm] - 10 [mm]x_{1} x_{2}[/mm] + 3 [mm](x_{2})^2[/mm] , x
> [mm]\in \IR{2}[/mm]
>  
> b) g(x) = [mm]2(x_{1})^2[/mm] + 8 [mm]x_{1} x_{2}[/mm] + 8 [mm](x_{2})^2[/mm] , x [mm]\in \IR{2}[/mm]
>  
> Hey, hoffentlich kann mir jemand helfen, knifflich ist b,
> da weiss ich nicht weiter!
>  
> zu a) habe ich die eigenwerte bestimmt 2 und 28 und die
> eigenvektoren!
>  Orthonormalbasis B = [mm]\bruch{1}{\wurzel[2]{26}} \pmat{ 1 & -5 \\ 5 & 1 }[/mm]
>  
> quadratische form bzgl. des hauptachsensystems :
>
> {f(y)} = [mm]2(y_{1})^2[/mm] + 28 [mm](y_{2})^2[/mm]
>
> aber was ist jetzt die Transformationsmatrix, ist damit die
> Drehmatrix gemeint [mm]B^T[/mm] *A*B??? kann mir da jemand weiter
> helfen.


Die Transformationsmatrix ist die Matrix B.


>  
> zu b) ich habe die Matrix aufgestellt, also A
>  
> [mm]\pmat{ 2 & 4 \\ 4 & 8 }[/mm]
>  
> so dann habe ich die eigenwerte bestimmt, die sind 30 und
> 20, und die eigenvektoren, allerdings sind das bei mir
> beides nullvektoren und da weiss ich nicht recht weiter,
> ausserdem sind die vektoren von ALinear abh. ..... das
> irritiert mich etwas


Nach meiner Rechnung kommen hier andere Eigenwerte heraus.


>  
> gruss bonanza


Gruss
MathePower

Bezug
                
Bezug
Hauptachsensysteme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Do 14.05.2009
Autor: bonanza123

Hey, stimmt hab mich verrechnet, jetzt habe ich 10 und 0 raus ?
dann ist Orthonormalbasis die transformationsmatrix ?


Bezug
                        
Bezug
Hauptachsensysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Do 14.05.2009
Autor: MathePower

Hallo bonanza123,

> Hey, stimmt hab mich verrechnet, jetzt habe ich 10 und 0
> raus ?


Ja. [ok]


>  dann ist Orthonormalbasis die transformationsmatrix ?
>  


So isses.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]