Hauptideal, Stetige Fkten < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:22 Di 13.11.2007 | Autor: | Fry |
Hallo,
folgende Aufgabe: Also ich betrachte den Ring der stetigen Funktionen [mm] \IR \to \IR [/mm] ,also [mm] C(\IR,\IR). [/mm] Ich habe gezeigt, dass I = { f [mm] \in C(\IR,\IR), [/mm] f(0)=0 } ein Ideal von [mm] C(\IR,\IR) [/mm] ist.
Nun möchte noch zeigen, dass I kein Hauptideal von [mm] C(\IR,\IR) [/mm] ist.
Habe mir überlegt, dass, wenn I Hauptideal wäre, jede Funktion aus I z.B. f(x) = sin x aus dem Produkt zweier anderer Funktionen g(x)*h(x) erzeugt werden kann, wobei g(x) [mm] \in [/mm] I das erzeugende Element und h(x) [mm] \in C(\IR,\IR) [/mm] sein soll. Da aber sin x eine "elementare" Funktion und nicht alleine durch die Verknüpfung anderer elementaren Funktionen wie id, [mm] e^x, [/mm] Konstanten,cos x darstellbar ist, muss einer der Faktoren sin x "enthalten" und damit wäre das erzeugende Element indirekt festgelegt, oder ?
Oder hat jemand vielleicht nen Tipp/Idee, wie genau ich das machen kann ?
Wäre super, wenn jemand helfen könnte. Danke.
VG
Fry
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:18 Mi 14.11.2007 | Autor: | SEcki |
> Hallo,
>
> folgende Aufgabe: Also ich betrachte den Ring der stetigen
> Funktionen [mm]\IR \to \IR[/mm] ,also [mm]C(\IR,\IR).[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Ich habe gezeigt,
> dass I = { f [mm]\in C(\IR,\IR),[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
f(0)=0 } ein Ideal von
> [mm]C(\IR,\IR)[/mm] ist.
> Nun möchte noch zeigen, dass I kein Hauptideal von
> [mm]C(\IR,\IR)[/mm] ist.
> Habe mir überlegt, dass, wenn I Hauptideal wäre, jede
> Funktion aus I z.B. f(x) = sin x aus dem Produkt zweier
> anderer Funktionen g(x)*h(x) erzeugt werden kann, wobei
> g(x) [mm]\in[/mm] I das erzeugende Element und h(x) [mm]\in C(\IR,\IR)[/mm]
> sein soll.
Ja, g ist der Erezuger des Ideals.
> Da aber sin x eine "elementare" Funktion und
> nicht alleine durch die Verknüpfung anderer elementaren
> Funktionen wie id, [mm]e^x,[/mm] Konstanten,cos x darstellbar ist,
> muss einer der Faktoren sin x "enthalten" und damit wäre
> das erzeugende Element indirekt festgelegt, oder ?
Hm, was? Selbst wenn du diese Aussageb zeigen könntest (und das musst du erst) - was bringt die dir? Dein h kann beliebig stetig sein.
> Oder hat jemand vielleicht nen Tipp/Idee, wie genau ich
> das machen kann ?
Erstmal: dein g hat, falls es existiert, außer in 0 keine weitere Nullstelle. Sei nun f eine beliebige Funktion, dann musst du [m]h*g=f[/m] lösen - also ein stetiges h finden mit dieser Eigenschaft. Außer im Nullpunkt ist das auch kein Problem - [m]h=f/g[/m]. Jetzt finde ein f (in Abhängikeit von g), so dass dieser Quotient nicht stetig in 0 fortsetzbar ist. Und: g ist blos stetig.
SEcki
|
|
|
|