www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungHessenormalform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - Hessenormalform
Hessenormalform < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hessenormalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:22 Mi 18.03.2009
Autor: evils

Wenn ich mittels der Hessenormalform einen Abstand ausrechne, und dieser ein - davor hat, sagt mir das, dass Punkt und Ebene oder Gerade und Ebene oder Ebene und Ebene auf der gleichen Seite liegen?

Hab ich das richtig verstanden? und wenn bei dem Abstand + herauskommt, heißt das sie liegen auf verschiedenen Seiten vom Ursprung?

oder verwechsel ich da nun was?

danke schonmal für eine Antwort!
lg Susi

        
Bezug
Hessenormalform: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 Mi 18.03.2009
Autor: Zwerglein

Hi, evils,

> Wenn ich mittels der Hessenormalform einen Abstand
> ausrechne, und dieser ein - davor hat, sagt mir das, dass
> Punkt und Ebene oder Gerade und Ebene oder Ebene und Ebene
> auf der gleichen Seite liegen?
>  
> Hab ich das richtig verstanden? und wenn bei dem Abstand +
> herauskommt, heißt das sie liegen auf verschiedenen Seiten
> vom Ursprung?
>
> oder verwechsel ich da nun was?

Ich erklär' Dir's mal lieber so:
Du hast eine Ebene.
Die halbiert den Anschauungsraum (das tut JEDE Ebene).
In der einen Hälfte liegt der Nullpunkt.

Wenn Du nun einen zweiten Punkt P hast und Du kriegst bei der Berechnung des Abstandes dieses Punktes von der Ebene mit Hilfe der HNF sagen wir mal -5 raus, dann heißt das:
Dieser Punkt liegt bezüglich der Ebene im selben Halbraum ("auf derselben Seite") wie der Nullpunkt; bei +5 wären O und P auf verschiedenen Seiten bezüglich E.

mfG!
Zwerglein

Bezug
                
Bezug
Hessenormalform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:22 Mi 18.03.2009
Autor: evils

also so... oder? [Dateianhang nicht öffentlich]

hät gleich noch eine frage..
und zwar,..

es sind zwei Ebenen in Parameterform gegeben
man soll die Schnittgerade errechnen

kann man nun auch auf eine andere Art und Weise als mit dem Gleichungssystem den Schnittpunkt herausbekommen?
Weil den Richtungsvektor kann man ja mit Hilfe der beiden Normalenvektoren (Kreuzprodukt) herausfinden... Wär total praktisch, da mich Gleichungssysteme immer total verwirren!

danke schonmal
lg Susi


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                        
Bezug
Hessenormalform: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 Mi 18.03.2009
Autor: glie


> also so... oder? [Dateianhang nicht öffentlich]
>  

Hallo Susi,


> hät gleich noch eine frage..
> und zwar,..
>
> es sind zwei Ebenen in Parameterform gegeben
>  man soll die Schnittgerade errechnen
>  
> kann man nun auch auf eine andere Art und Weise als mit dem
> Gleichungssystem den Schnittpunkt herausbekommen?
> Weil den Richtungsvektor kann man ja mit Hilfe der beiden
> Normalenvektoren (Kreuzprodukt) herausfinden... Wär total
> praktisch, da mich Gleichungssysteme immer total verwirren!

Also am einfachsten geht es eigentlich, wenn du eine Ebene in der Parameterform lässt und die andere Ebene in die Koordinatenform umrechnest.

Dann kannst du die eine Ebene in die andere einsetzen.

Beispiel:

[mm] \mm{E:\overrightarrow{X}=\vektor{1 \\ 2 \\ 3}+r*\vektor{1 \\ 2 \\ 2}+s*\vektor{2 \\ 0 \\ 3}} [/mm]

[mm] \mm{H:2x_1-x_2+2x_3-4=0} [/mm]

E in H einsetzen:
[mm] \mm{2*(1+r+2s)-(2+2r)+2(3+2r+3s)-4=0} [/mm]

Wenn du das auflöst erhältst du:
[mm] \mm{r=-2,5s-0,5} [/mm]

Setze das in die Parameterform der Ebene E, fasse zusammen und du hast eine Gleichung der Schnittgerade.

Gruß Glie

>
> danke schonmal
> lg Susi
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]