www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenHilbertraum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Hilbertraum
Hilbertraum < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hilbertraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 So 03.01.2010
Autor: raubkaetzchen

Aufgabe
Seien H ein reeller Hilbertraum nd C [mm] \subset [/mm] H eine abgeschlossene konvexe Menge. Definiere p:H->C als eine Projektion auf C, d.h. für jedes x [mm] \in [/mm] H ist p(x) der Punkt in C mit minimalen Abstand,

||x-p(x)||=inf{||x-y||:y [mm] \in [/mm] C}

zeigen sie, dass dann

a) <p(x)-y,p(x)-x> [mm] \le [/mm] 0 für alle y [mm] \in [/mm] C und daraus folgend
b)||p(x)-p(x')|| [mm] \le [/mm] ||x-x'||



Also die a) habe ich mittlerweile gezeigt.

Ich komme nur nicht darauf, warum gerade deshalb b) gelten muss.

Habt ihr einen Tipp für mich

Also für den fall, dass x, x' [mm] \in [/mm] C sind, dann gilt natürlich
||p(x)-p(x')|| = ||x-x'||

aber wie siehts mit den anderen aus? Irgendwie stehe ich auf dem schlauch.

Danke für eure Hilfe
        
Bezug
Hilbertraum: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 So 03.01.2010
Autor: pelzig


> Ich komme nur nicht darauf, warum gerade deshalb b) gelten muss.

Benutze a), dann hast du die beiden Ungleichungen [mm] $\langle p(x)-p(x'),p(x)-x\rangle\le [/mm] 0$ und [mm] $\langle p(x')-p(x),p(x')-x\rangle\le [/mm] 0$. Jetzt wurschtel damit n bissl rum. Am Ende brauchst du nochmal Cauchy-Schwarz...

Gruß, Robert

Bezug
                
Bezug
Hilbertraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:08 So 03.01.2010
Autor: raubkaetzchen

Alles Klar Robert,

Die aufgabe habe ich jetzt gelöst.

Besten Dank nochmal


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]