Hilfe Supremum und Infimum < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:14 Sa 06.11.2004 | Autor: | ThomasK |
Hallo
Ich weiß was ein Supremum und ein Infimum ist aber wie bereichnet man sowas aus einer Menge?
Hab hier die Aufgabe
M= [mm] {(-1)^n(2+3/n) /n N}
[/mm]
und
M= [mm] {(-1/3)^m + 5/n /m,nN}
[/mm]
Vielleicht kennst sich jemand aus und kann mir das ein bischen erklären...
mfg
Thomas
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:21 Sa 06.11.2004 | Autor: | Micha |
Hallo Thomas!
> Hallo
>
> Ich weiß was ein Supremum und ein Infimum ist aber wie
> bereichnet man sowas aus einer Menge?
>
> Hab hier die Aufgabe
>
> M= [mm]{(-1)^n(2+3/n) /n N}
[/mm]
> und
> M= [mm]{(-1/3)^m + 5/n /m,nN}
[/mm]
>
Also bei solchen Aufgaben muss du immer gucken, was passiert eigentlich, wenn ich ein m und ein n einsetze und dann größer oder kleiner mache. Ich betrachte die Menge als eine Folge von n.
Nehmen wir dann die Extremfälle bei der ersten Aufgabe als Übung:
n darf nicht 0 sein, sonst ist der Ausdruck nicht definiert. Setzen wir also den ersten Ausdruck ein:
n=1: [mm] $(-1)^1 [/mm] (2+3/1) = -( 2 + 3) = -5$
Dann n=2: $ [mm] (-1)^2 [/mm] (2 + 3/2) = 2 + 3/2 = 7/2 = 3,5$
Nun siehst du, dass es eine alternierende Folge ist, also mit wechselndem Vorzeichen. Und für n gegen unendlich erhält man, dass die Folge gegen 2 bzw. -2 strebt. Das sind die 2 sogenannten Häufungspunkte.
Nun aber zurück zu dem Infimum und Supremum. Das Infimum ist erklärt als die größte untere Schranke. und weil ab n=1 alle Folgenglieder größer als -5 sind, ist das das Infimum. Betrachte dazu das Supremum: alle Folgendglieder sind kleiner als 3,5. Damit ist das, die gesuchte kleinste obere Schranke. Wäre die Schranke nämlich noch kleiner, so wäre 3,5 nicht mehr drin.
Ich bin mir recht sicher, dass du die 2. Aufgabe auch allein schaffst. Hier musst du dir als zusätzliche Schwierigkeit noch ein paar Kombinationen von m und n anschauen: Welche m,n sind erlaubt? Was passiert bei großem/kleinen m,n in allen Kombinationen (sind ja nicht viele). Was geschieht dazwischen?
Ich bin gespannt auf deine Ergebnisse zur zweiten Teilaufgabe.
Gruß Micha
|
|
|
|