www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisHilfe bei Differential Aufg.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Hilfe bei Differential Aufg.
Hilfe bei Differential Aufg. < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hilfe bei Differential Aufg.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 Di 27.06.2006
Autor: snappy

Aufgabe
In einem Dorf leben im Durchschnitt etwa 120 Katzen (Räuber) und 3400 Mäuse (Beute).
Die Funktionen r und b beschreiben die Schwankungen der Populationen um die Ausgangswerte. Es gelten die Differenzialgleichungen r’(t)= 0,01*b(t) und b’(t)= -0,7*r(t).

a) Bestimmen Sie r und b, wenn r(0) = 200 und b(0) = 2800 beträgt. Wann nimmt die Zahl der Mäuse am stärksten ab?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Für die harmonische Schwingung gilt b(t)= A*sin(k*t + c)

Durch Ableiten und Gleichsetzen habe ich für
b(t)= A*sin(  [mm] \wurzel{0,007} [/mm] *t+c)


Zu a)      r(0)= 200= A*sin(c)
              r’(0)= A*k*cos(c)

setze ich r’ aus Aufgabenstellung ein

A*  [mm] \wurzel{0,007} [/mm] * cos (c)= 0,01*2800

Nach umformen bekomme ich für c  [mm] \approx [/mm] 0,54 und für A [mm] \approx [/mm]  389,87 stimmt dies?

Und somit r(t)= 389,87 * sin( [mm] \wurzel{0,007} [/mm] *t + 0,54)

b) Nun ist die Frage wann die Zahl der Mäuse am stärksten abnimmt

Also wird das Minimum gesucht => wann ist b’(t) = 0           oder?

      b’(t)= -0,7 * r(t)
wenn ich aber nun r(t) einsetze komme ich auf ein, nicht der Grafik und der Logik( da negatives Vorzeichen) entsprechendes Ergebnis!

Bitte um Hilfe!
Danke




        
Bezug
Hilfe bei Differential Aufg.: b(0)=?, r(0) =?
Status: (Antwort) fertig Status 
Datum: 23:45 Mi 28.06.2006
Autor: chrisno

Hallo snappy

> In einem Dorf leben im Durchschnitt etwa 120 Katzen
> (Räuber) und 3400 Mäuse (Beute).
>  Die Funktionen r und b beschreiben die Schwankungen der
> Populationen um die Ausgangswerte. Es gelten die
> Differenzialgleichungen r’(t)= 0,01*b(t) und b’(t)=
> -0,7*r(t).
>  
> a) Bestimmen Sie r und b, wenn r(0) = 200 und b(0) = 2800
> beträgt. Wann nimmt die Zahl der Mäuse am stärksten ab?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Für die harmonische Schwingung gilt b(t)= A*sin(k*t + c)
>  
> Durch Ableiten und Gleichsetzen habe ich für
> b(t)= A*sin(  [mm]\wurzel{0,007}[/mm] *t+c)
>  

k habe ich auch so heraus.

>
> Zu a)      r(0)= 200= A*sin(c)

warum?    b(0) = 2800 = A*sin(c)
          r(0) = (-k/0,7)*A*cos(c)

weiter habe ich nicht gerechnet

Bezug
        
Bezug
Hilfe bei Differential Aufg.: Antwort
Status: (Antwort) fertig Status 
Datum: 02:20 Do 29.06.2006
Autor: droller

Hey, bei a hab ich das gleiche bei b ist das Minus weil die Steigung negativ ist ( nach der Aufgabe nimmt die Zahl der Mäuse ab d.h. negative Steigung ), doch denke ich dass wenn du  wissen willst wann die Zahl der Mäuse am stärksten abnimmt mußt du das Maximum der 1. Ableitung suchen d.h. die Stelle mit der größten Steigung. Also ist der Ansatz für b:  b''(t)=0.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]