www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungHilfe bei Integralrechnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Hilfe bei Integralrechnung
Hilfe bei Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hilfe bei Integralrechnung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:18 Di 09.02.2010
Autor: itstudentin

[mm] \integral_{a}^{b}{a(1+x)^{-a-1} dx} [/mm] = a* [mm] \bruch{(1+x)}{-a}^{-a} |_{0}^{\infty} [/mm] = [mm] -(1+x)^{-a} |_{0}^{\infty} [/mm] = 0-(-1) = 1

wobei a [mm] \in [/mm] (0, [mm] \infty) [/mm] und b=1

Ich weiss schon das Ergebnis. Aber ich verstehe nicht, wie man darauf kommt. Meine Fragen:

1) Wieso im dritten Schritt steht -a im Nenner?
2) Wie berechnet man F(b)-F(a) verstehe ich in diesem Beispiel auch nicht..

Könnte vielleicht jemand die Zwischenrechnung mit ein bisschen Erklärung machen? Ich bedanke mich im Voraus.

        
Bezug
Hilfe bei Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Di 09.02.2010
Autor: steppenhahn

Hallo,

> [mm]\integral_{a}^{b}{a(1+x)^{-a-1} dx}[/mm] = a*
> [mm]\bruch{(1+x)}{-a}^{-a} |_{0}^{\infty}[/mm] = [mm]-(1+x)^{-a} |_{0}^{\infty}[/mm]
> = 0-(-1) = 1
>  
> wobei a [mm]\in[/mm] (0, [mm]\infty)[/mm] und b=1
>  
> Ich weiss schon das Ergebnis. Aber ich verstehe nicht, wie
> man darauf kommt. Meine Fragen:
>  
> 1) Wieso im dritten Schritt steht -a im Nenner?

Die Regel (direkt abgeleitet aus der Potenzregel fürs Ableiten) lautet:

Eine Stammfunktion von $f(x) = [mm] x^{n}$ [/mm] ist $F(x) = [mm] \frac{1}{n+1}*x^{n+1}$. [/mm] (Kannst du leicht durch Ableiten nachvollziehen)!

Bei uns ist: $f(x) = [mm] a*(1+x)^{-a-1}$. [/mm]
Nun die Regel (In diesem Fall ist $n = -a-1$ !):

$F(x) = [mm] a*\frac{1}{(-a-1)+1}*(1+x)^{(-a-1) + 1} [/mm] = [mm] a*\frac{1}{-a}*(1+x)^{-a}$. [/mm]

Okay?

>  2) Wie berechnet man F(b)-F(a) verstehe ich in diesem
> Beispiel auch nicht..

Wir wissen nun, dass

$F(x) = [mm] -(1+x)^{-a} [/mm] = [mm] \frac{-1}{(1+x)^{a}}$, [/mm] wobei a > 0.

ist.

Nun müssen wir

[mm] $F(\infty) [/mm] - F(0)$

bestimmen.
Ich denke, für a [mm] \ge [/mm] 1 ist es einsichtig, warum der Term für [mm] x\to\infty [/mm] gegen 0 geht: Der Nenner wird für x immer größer, und a beschleunigt diesen Vorgang sogar.

Dies ist aber auch für a < 1 der Fall, denn obwohl dann so etwas wie zum Beispiel [mm] \frac{-1}{\sqrt{1+x}} [/mm]

dasteht (für a = 1/2 ), kannst du dir vorstellen, dass das für x gegen unendlich der Nenner immer noch gegen unendlich geht.

Grüße,
Stefan

Bezug
                
Bezug
Hilfe bei Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:43 Di 09.02.2010
Autor: itstudentin

Alles klar. Vielen Dank!!!

Bezug
        
Bezug
Hilfe bei Integralrechnung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:34 Di 09.02.2010
Autor: itstudentin

Danke!!! Ich habe noch eine dritte Frage: :-)
[mm] -(1+x)^{-a}|_{0}^{\infty} [/mm] =  0-(-1)=1 dies sollte dem F(b)-F(a) entsprechen.

Muss ich bei dieser Berechnung zuerst anstelle von X den Wert von b stellen und danach den Wert von a?

Aber ich kenne den Wert a nicht. Ich weiss nur, dass a [mm] \in (0,\infty) [/mm] liegt.


Bezug
                
Bezug
Hilfe bei Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 Di 09.02.2010
Autor: itstudentin

Es ist mir alles klar geworden.. Danke an alle!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]