Historische Mathematik < Sonstiges < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:04 Do 04.05.2006 | Autor: | Ilcoron |
Hi
Der Araber As-Samawal befasste sich mit dem Ausdruck :
[mm] \summe_{-l \le n \le k}^{} a_{n} x^{n}
[/mm]
wobei l und k nicht negative ganze zahlen sind.
und die division von Polynomen durch Polynome, die nciht notwendigerweise Monome sind, zb [mm] 20x^{2}+30x [/mm] dividiert durch [mm] 6x^{2}+12
[/mm]
Für diesen Quotienten gilt für [mm] |x|>\wurzel{2} [/mm] die darstellung:
[mm] \bruch{20x^{2}+30x}{6x^{2}+12}=3*1/3+5*1/x-6*2/3*1/x^{2}-10*1/x^{3}+13*1/3*1/x^{4}+20*1/x^{5}-26*2/3*1/x^{6}-40*1/x^{7}+...= \summe_{n=0}^{ \infty}a_{n} x^{-n}
[/mm]
mit [mm] a_{0}=3*1/3 [/mm] ; [mm] a_{1}=5 [/mm] und [mm] a_{n+2}=-2a_{n}
[/mm]
Damit lautet die Aproximation:
[mm] 3*1/3+5*1/x-6*2/3*1/x^{2}-10*1/x^{3}+13*1/3*1/x^{4}+20*1/x^{5}-26*2/3*1/x^{6}+...-40*1/x^{7}
[/mm]
Soweit stand dies in einem Buch. Kann mir das jemand erklären?
Eine Frage ist zb. müsste nach [mm] a_{n+2}=-2a_{n} a_{2}=-2a_{0}=-2*3*1/3=-6*1/3 \not=-6*2/3
[/mm]
aber auch sonst ist mir das schleierhaft
danke schon mal
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:27 Do 04.05.2006 | Autor: | leduart |
Hallo Ilcoron
> Hi
> Der Araber As-Samawal befasste sich mit dem Ausdruck :
> [mm]\summe_{-l \le n \le k}^{} a_{n} x^{n}[/mm]
> wobei l und k
> nicht negative ganze zahlen sind.
Was hat das mit dem Rest zu tun?
> und die division von Polynomen durch Polynome, die nciht
> notwendigerweise Monome sind, zb [mm]20x^{2}+30x[/mm] dividiert
> durch [mm]6x^{2}+12[/mm]
> Für diesen Quotienten gilt für [mm]|x|>\wurzel{2}[/mm] die
> darstellung:
>
> [mm]\bruch{20x^{2}+30x}{6x^{2}+12}=3*1/3+5*1/x-6*2/3*1/x^{2}-10*1/x^{3}+13*1/3*1/x^{4}+20*1/x^{5}-26*2/3*1/x^{6}-40*1/x^{7}+...= \summe_{n=0}^{ \infty}a_{n} x^{-n}[/mm]
>
> mit [mm]a_{0}=3*1/3[/mm] ; [mm]a_{1}=5[/mm] und [mm]a_{n+2}=-2a_{n}[/mm]
Hier hast du was falsch gelesen oder interpretiert: es ist nicht [mm] a_{0}=3*1/3 [/mm] sondern [mm] a_{0}=3\bruch{1}{3}= 3+\bruch{1}{3}
[/mm]
> Damit lautet die Aproximation:
>
> [mm]3*1/3+5*1/x-6*2/3*1/x^{2}-10*1/x^{3}+13*1/3*1/x^{4}+20*1/x^{5}-26*2/3*1/x^{6}+...-40*1/x^{7}[/mm]
>
> Soweit stand dies in einem Buch. Kann mir das jemand
> erklären?
Kennst du Polynomdivision? Dann führ sie einfach durch, und du hast das Ergebnis, allerdings immer mit dem + zw. Zahl und Bruch nicht mit *, 6*2/3 würde wohl auch ein alter Araber kürzen zu 2*2=4
> Eine Frage ist zb. müsste nach [mm]a_{n+2}=-2a_{n} a_{2}=-2a_{0}=-2*3*1/3=-6*1/3 \not=-6*2/3[/mm]
siehe oben!
Die Summe, die man da hinschreibt ist nur sinnvoll, also stellt die ursprüngliche Funktion dar, wenn sie konvergiert, also auch für n gegen unendlich den Wert 20/6 hat. wenn man Werte für x mit [mm] x<\wurzel{2} [/mm] nimmt divergiert also die Summe und stellt somit nicht mehr die Funktion dar.
Waren das deine Fragen?
Warum diese Approximation interessant ist, kann ich dir allerdings nicht sagen!
Gruss leduart
|
|
|
|