www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisHöhre Potenzen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Höhre Potenzen
Höhre Potenzen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Höhre Potenzen: Aufgabe1, Frage; Idee
Status: (Frage) beantwortet Status 
Datum: 19:28 Mi 14.12.2005
Autor: Swoosh

Hier ein Aufgabe mit der  ich nicht zu recht komme:

[mm] \bruch{2a^{n+1}+3a^{6}+2a^{5}+1}{2a^{n+2}}- \bruch{2a^{n-4}+3}{3a^{n-3}}- \bruch{2a^{n-5}+9}{6a^{n-4}}= [/mm] GROßES ?

Ich habe zwar ein Lösungs-Ansatz der aber falsch ist, da ich die   Lösung:  [mm] \bruch{1}{2a^{n+2}} [/mm] habe! Und mein Ergebnis von nicht mit dem übereinstimmt!


Bitte keine komplette Lösung, beschreibt doch einfach mal wie ihr diese Aufgabe lösen würdet, oder welche Möglichkeiten ihr seht......... ich habe z.B. 7-24a als Lösung, weil ich meinte den Rest weg kürzen zu können ;P!



Ps. Wenn man die Potenz einer Zahl unter dem Bruchstrich ins negative schreibt also - und diese * auf den Bruchstrich schreibt, ist es ja das selbe als ob sie postiv darunter steht, was ist aber wenn sie negativ unterndem Bruchstrich steht? Müsste dann doch Positiv werden?

Kann man aus solchen  Brüchen  kürzen z.b die 12?  [mm] \bruch{12n: 6a^{5}}{12n:4a^{4}}!??? [/mm]





Danke schon mal im Vorraus!




        
Bezug
Höhre Potenzen: Hauptnenner bilden
Status: (Antwort) fertig Status 
Datum: 19:55 Mi 14.12.2005
Autor: Loddar

Hallo Swoosh!


Bringe diese 3 Teilbrüche durch Erweitern auf den Hauptnenner [mm] $6*a^{n+2}$ [/mm] und fasse auf einem Bruchstrich zusammen.

Anschließend im Zähler die entstandenen Klammern ausmultiplizieren und endgültig zusammenfassen.



> Kann man aus solchen  Brüchen  kürzen z.b die 12?  
> [mm]\bruch{12n: 6a^{5}}{12n:4a^{4}}!???[/mm]

Aus diesem Bruch darfst Du zunächst sogar $12n_$ kürzen. Am besten geht aber so:

[mm] $\bruch{12n: 6a^{5}}{12n:4a^{4}} [/mm] \ = \ [mm] \bruch{\bruch{12n}{6a^5}}{\bruch{12n}{4a^4}} [/mm] \ = \ [mm] \bruch{12n}{6a^5} [/mm] * [mm] \bruch{4a^4}{12n} [/mm] \ = \ [mm] \bruch{\red{12n}*2*\blue{2a^4}}{\red{12n}*3a*\blue{2a^4}} [/mm] \ = \ ...$


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]