www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisHolom. / Konvergenz, Gegenbsp
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Holom. / Konvergenz, Gegenbsp
Holom. / Konvergenz, Gegenbsp < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Holom. / Konvergenz, Gegenbsp: Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:35 So 05.07.2009
Autor: cantor

Aufgabe
Sei $K [mm] \subset \IC$ [/mm] kompakt, $ f: K [mm] \to \IC$ [/mm] mit der folgenden Eigenschaft (*)
[mm] $\forall \epsilon [/mm] > 0$ $  [mm] \exists [/mm] g: [mm] \IC \to \IC: [/mm] $ [mm] $\parallel [/mm] g - f [mm] \parallel_{K} [/mm] < [mm] \epsilon$ [/mm]
Zeige
(a) Notwendig für die Eigenschaft (*) der Funktion ist, dass f auf K stetig und auf der Menge der inneren Punkte von K holomorph ist.
(b) die in Teil (a) genannten Bedingungen an f sind nicht hinreichend, damit f die Eigenschaft (*) erfüllt

Hi!

Teil (a) der Aufgabe ist mir einigermaßen klar, aber in Teil (b) finde ich einfach kein geeignetes Gegen-Beispiel. Kann mir jemand helfen?

Vielen Dank !!

Gruesse

        
Bezug
Holom. / Konvergenz, Gegenbsp: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:51 So 05.07.2009
Autor: Merle23


> Sei [mm]K \subset \IC[/mm] kompakt, [mm]f: K \to \IC[/mm] mit der folgenden
> Eigenschaft (*)
>  [mm]\forall \epsilon > 0[/mm] [mm]\exists g: \IC \to \IC:[/mm] [mm]\parallel g - f \parallel_{K} < \epsilon[/mm]
>  

Soll das g hierbei irgendwelche Eigenschaften haben, z.B. holomorph sein?

> Zeige
>  (a) Notwendig für die Eigenschaft (*) der Funktion ist,
> dass f auf K stetig und auf der Menge der inneren Punkte
> von K holomorph ist.
>  (b) die in Teil (a) genannten Bedingungen an f sind nicht
> hinreichend, damit f die Eigenschaft (*) erfüllt
>  Hi!
>
> Teil (a) der Aufgabe ist mir einigermaßen klar, aber in
> Teil (b) finde ich einfach kein geeignetes Gegen-Beispiel.
> Kann mir jemand helfen?
>  
> Vielen Dank !!
>  
> Gruesse

Bezug
                
Bezug
Holom. / Konvergenz, Gegenbsp: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:00 So 05.07.2009
Autor: Gonozal_IX

Das hab ich mir auch gedacht, als ich die Frage gelesen hab^^
Ansonsten: Wähle g=f und alles ist gut....

MFG,
Gono.

Bezug
                        
Bezug
Holom. / Konvergenz, Gegenbsp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:25 Mo 06.07.2009
Autor: cantor

Hi,

danke fuer eure Rueckmeldung.

sorry, g holomorph hatte ich vergessen hinzuschreiben!

Habt ihr Ideen?

Danke!

Bezug
                                
Bezug
Holom. / Konvergenz, Gegenbsp: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Mo 06.07.2009
Autor: Merle23

Mit [mm]\| \ \cdot \ \|_K[/mm] ist die Supremums-Norm gemeint?

Dann bedeutet [mm]\forall \epsilon > 0 \exists g:\IC \to \IC \ holomorph( \parallel g - f \parallel_{K} < \epsilon)[/mm], dass f der glm. Limes von holomorphen Funktionen ist.

Was weisst du über den glm. Limes stetiger Funktionen, was über den glm. Limes holomorpher Funktionen?

Bezug
                                        
Bezug
Holom. / Konvergenz, Gegenbsp: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:41 Mi 08.07.2009
Autor: cantor

hab die Aufgabe geschnallt

danke für Eure Antworten!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]