www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisHolomorphe Fortsetzung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Holomorphe Fortsetzung
Holomorphe Fortsetzung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Holomorphe Fortsetzung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:26 Mo 09.11.2009
Autor: Fry

Aufgabe
Sei [mm] $\Phi(s)=\sum_{p}\frac{\log p}{p^s}$ ($s\in\IC, p\in\IP$) [/mm]
Dann gilt, [mm] $\Phi(s)-\frac{1}{s-1}$ [/mm] ist holomorph für [mm] $Re(s)\ge1$. [/mm]


Hallo,

ich möchte den Beweis über die Darstellung

[mm] $-\frac{\zeta '(s)}{\zeta(s)}=\Phi(s)+\sum_{p}\frac{\log p}{p^s(p^s-1)}$ [/mm]

führen, die für $Re(s)>1$ gilt (wobei [mm] $\zeta(s)$ [/mm] die Riemannsche Zetafunktion ist)

Ferner weiß ich folgendes:
(1) [mm] $\Phi(s)$ [/mm] ist eine holomorphe Fkt für $Re(s)>1$
(2) Die zweite Summe auf der rechten Seite konvergiert für [mm] $Re(s)>\frac{1}{2}$ [/mm]
(3) [mm] $\zeta(s)\not=0$ [/mm] für [mm] $Re(s)\ge [/mm] 1$ und [mm] $\zeta$ [/mm] hat einen Pol 1.Ordnung in $s=1$. [mm] $\zeta$ [/mm] ist holomorph für $Re(s)>1$.

Ich denke mit diesen Voraussetzungen müsste man das Problem lösen können. Könnte mir dabei jemand helfen? Bin für jede Hilfe dankbar!

Viele Grüße
Fry

        
Bezug
Holomorphe Fortsetzung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mo 16.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]