www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeHomogenität eines linearen GLS
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - Homogenität eines linearen GLS
Homogenität eines linearen GLS < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homogenität eines linearen GLS: Idee
Status: (Frage) beantwortet Status 
Datum: 15:06 So 08.09.2013
Autor: valentina

Aufgabe
Welche der folgenden Aussagen ist äqivalent zur Homogenität eines linearen Gleichungssystems mit m Gleichungen und n Unbekannten?
- die triviale Lsg. x=0 ist eine Lösung des Systems
- es gibt eine spezielle Lösung z des Systems und ein a e R , a ungleich 1, sodass auch a mal x eine Lösung ist
- die Lösungsmenge bildet einen Teilraum von [mm] R^n [/mm]
- für alle Lösungen  z vom System  und alle a e R gilt: auch a mal z ist Lösung vom System

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Den ersten Punkt beweise ich, indem ich sage, wenn für alle x die Lösung 0 ist, dann gibt es unabhängig von allen Keoffizienten nur eine Möglichkeit, sodass alle m Gleichungen des Systems erfüllt sind, nämlich alle b (d.h. die rechte Seite vom =) müssen ebenfalls 0 sein.

Allerdings ist mir völlig schleierhaft, wie ich den Rest zeigen kann. Reicht meine Begründung oben denn eigentlich überhaupt als formaler korrekt ausgeführter mathematischer Beweis?
Für Tipps wäre ich sehr dankbar!!!
Lg

        
Bezug
Homogenität eines linearen GLS: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 So 08.09.2013
Autor: Diophant

Hallo und

[willkommenmr]

> Welche der folgenden Aussagen ist äqivalent zur
> Homogenität eines linearen Gleichungssystems mit m
> Gleichungen und n Unbekannten?
> - die triviale Lsg. x=0 ist eine Lösung des Systems
> - es gibt eine spezielle Lösung z des Systems und ein a e
> R , a ungleich 1, sodass auch a mal x eine Lösung ist
> - die Lösungsmenge bildet einen Teilraum von [mm]R^n[/mm]
> - für alle Lösungen z vom System und alle a e R gilt:
> auch a mal z ist Lösung vom System
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>

> Den ersten Punkt beweise ich, indem ich sage, wenn für
> alle x die Lösung 0 ist, dann gibt es unabhängig von
> allen Keoffizienten nur eine Möglichkeit, sodass alle m
> Gleichungen des Systems erfüllt sind, nämlich alle b
> (d.h. die rechte Seite vom =) müssen ebenfalls 0 sein.

>

> Allerdings ist mir völlig schleierhaft, wie ich den Rest
> zeigen kann. Reicht meine Begründung oben denn eigentlich
> überhaupt als formaler korrekt ausgeführter
> mathematischer Beweis?

Du solltest dir zunächst nochmals klar machen, was die Eigenschaft äquivalent in der Mathematik bedeutet. Dann solltest du dir die Aufgabenstellung nochmal genau durchlesen. Du sollst hier nicht etwa vier Aussagen beweisen, sondern entscheiden, ob sie wahr oder falsch sind.

Ich mache mal einen Anfang. Nur ein homogenes LGS besitzt stets die Triviallösung [mm] x_1=x_2=...=x_n=0. [/mm] Damit ist aber nichts über weitere Lösungen gesagt. Daher kann die Auusage (1) keinesfalls äquivalent sein zu der Tatsache, dass das zugrundeliegende LGS homogen ist, sondern sie folgt aus der Homogenität, mehr eben nicht.

Mit solchen Überlegungen solltest du jetzt die drei anderen Punkte nochmals angehen. Überlege dir genau, ob Schlussfolgerungen ggf. in beide Richtungen funktionieren oder nicht, schlage ggf. Begriffe wie Teilraum nach und stelle dann deine Überlegungen hier vor.


Gruß, Diophant

Bezug
                
Bezug
Homogenität eines linearen GLS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:26 So 08.09.2013
Autor: fred97


> Hallo und
>  
> [willkommenmr]
>  
> > Welche der folgenden Aussagen ist äqivalent zur
>  > Homogenität eines linearen Gleichungssystems mit m

>  > Gleichungen und n Unbekannten?

>  > - die triviale Lsg. x=0 ist eine Lösung des Systems

>  > - es gibt eine spezielle Lösung z des Systems und ein a

> e
>  > R , a ungleich 1, sodass auch a mal x eine Lösung ist

>  > - die Lösungsmenge bildet einen Teilraum von [mm]R^n[/mm]

>  > - für alle Lösungen z vom System und alle a e R gilt:

>  > auch a mal z ist Lösung vom System

>  > Ich habe diese Frage in keinem Forum auf anderen

>  > Internetseiten gestellt.

>  >
>  > Den ersten Punkt beweise ich, indem ich sage, wenn für

>  > alle x die Lösung 0 ist, dann gibt es unabhängig von

>  > allen Keoffizienten nur eine Möglichkeit, sodass alle

> m
>  > Gleichungen des Systems erfüllt sind, nämlich alle b

>  > (d.h. die rechte Seite vom =) müssen ebenfalls 0 sein.

>  >
>  > Allerdings ist mir völlig schleierhaft, wie ich den

> Rest
>  > zeigen kann. Reicht meine Begründung oben denn

> eigentlich
>  > überhaupt als formaler korrekt ausgeführter

>  > mathematischer Beweis?

>  
> Du solltest dir zunächst nochmals klar machen, was die
> Eigenschaft äquivalent in der Mathematik bedeutet. Dann
> solltest du dir die Aufgabenstellung nochmal genau
> durchlesen. Du sollst hier nicht etwa vier Aussagen
> beweisen, sondern entscheiden, ob sie wahr oder falsch
> sind.
>  
> Ich mache mal einen Anfang. Ein homogenes LGS besitzt stets
> die Triviallösung [mm]x_1=x_2=...=x_n=0.[/mm] Damit ist aber nichts
> über weitere Lösungen gesagt. Daher kann die Auusage (1)
> keinesfalls äquivalent sein zu der Tatsache, dass das
> zugrundeliegende LGS homogen ist, sondern sie folgt aus der
> Homogenität, mehr eben nicht.

Hallo Diophant,

da muss ich Dir widersprechen.

Gegeben sei das LGS Ax=b.

1. Ist b=0, so ist x=0 eine Lösung.

2. Ist x=0 eine Lösung, so ist b=A0=0.

Gruß FRED

>  
> Mit solchen Überlegungen solltest du jetzt die drei
> anderen Punkte nochmals angehen. Überlege dir genau, ob
> Schlussfolgerungen ggf. in beide Richtungen funktionieren
> oder nicht, schlage ggf. Begriffe wie Teilraum nach und
> stelle dann deine Überlegungen hier vor.
>  
>
> Gruß, Diophant


Bezug
                        
Bezug
Homogenität eines linearen GLS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:40 So 08.09.2013
Autor: Diophant

Hallo FRED,

du hast natürlich Recht. Da war ich irgendwie überhaupt nicht bei der Sache.

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]