www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraHomomorphiesatz - Anwendung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Homomorphiesatz - Anwendung
Homomorphiesatz - Anwendung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homomorphiesatz - Anwendung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 Fr 06.04.2007
Autor: Natalie2210

Aufgabe
Sei [mm] G=(\IR,+) [/mm] und [mm] N=(\IZ;+) [/mm] ein Normalteiler davon. Zeige, dass [mm] \IR /\IZ [/mm] isomorph zur Gruppe [mm] H=\{e^{2\pi*i*a}, a\in \IR\} [/mm] ist.  

Um den Homomorphiesatz anwenden zu können, möchte ich einen surjektiven Homomorphismus f: G->H finden, mit ker [mm] f=\IZ. [/mm]

Ich habe mir überlegt, dass [mm] $e^{2\pi*i*a} [/mm] = [mm] \cos 2\pi*a [/mm] + [mm] i*\sin 2\pi*a$ [/mm] ist. für [mm] a\in\IZ [/mm] ist das ein vielfaches von [mm] 2\pi [/mm] und [mm] e^{2\pi*i*a}=1 [/mm] , also das neutrale Element in H.  

Damit wäre mein [mm] f(a)=e^{2\pi*i*a} [/mm] und ker [mm] f=\IZ [/mm] und nach dem Homomorphiesatz ist dann G/ker f = [mm] \IR /\IZ [/mm] isomorph zu H.

Mein Problem ist, dass mir diese Lösung zu einfach vorkommt..
lg,
Natalie

        
Bezug
Homomorphiesatz - Anwendung: Schreibfehler!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 Fr 06.04.2007
Autor: Natalie2210

In der Aufgabe soll es [mm] e^{2*\pi*i*a} [/mm] heißen! ich muss mich beim [mm] \pi [/mm] vertippt haben..

lg,
Natalie

Bezug
        
Bezug
Homomorphiesatz - Anwendung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 Fr 06.04.2007
Autor: felixf

Hallo Natalie!

> Sei [mm]G=(\IR,+)[/mm] und [mm]N=(\IZ;+)[/mm] ein Normalteiler davon. Zeige,
> dass [mm]\IR /\IZ[/mm] isomorph zur Gruppe [mm]H=\{e^{2\pi*i*a}, a\in \IR\}[/mm]
> ist.
> Um den Homomorphiesatz anwenden zu können, möchte ich einen
> surjektiven Homomorphismus f: G->H finden, mit ker [mm]f=\IZ.[/mm]
>
> Ich habe mir überlegt, dass [mm]e^{2\pi*i*a} = \cos 2\pi*a + i*\sin 2\pi*a[/mm]
> ist. für [mm]a\in\IZ[/mm] ist das ein vielfaches von [mm]2\pi[/mm] und
> [mm]e^{2\pi*i*a}=1[/mm] , also das neutrale Element in H.

Genau. Damit hast du jedoch erstmal nur, dass [mm] $\IZ \subseteq \ker [/mm] f$ ist.

Allerdings: ist [mm] $e^{2 \pi i a} [/mm] = 1$, so muss $a [mm] \in \IZ$ [/mm] sein (das lernt man irgendwo in der Analysis, wo man die Null- und Einsstellen von [mm] $\sin$ [/mm] und [mm] $\cos$ [/mm] untersucht). Insofern hat man dann [mm] $\ker [/mm] f = [mm] \IZ$. [/mm]
  

> Damit wäre mein [mm]f(a)=e^{2\pi*i*a}[/mm] und ker [mm]f=\IZ[/mm] und nach
> dem Homomorphiesatz ist dann G/ker f = [mm]\IR /\IZ[/mm] isomorph zu
> H.
>
> Mein Problem ist, dass mir diese Lösung zu einfach
> vorkommt..

Sie ist aber korrekt.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]