Homotopie von Kurven in der komplexen Ebene < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo mal wieder.
Ich habe diese Frage in keinem weiteren Forum gestellt
Ich bin mit meinen Vorbereitungen aufs Studium mittlerweile beim Homotopiebegriff angelangt. Dabei ist mir dann doch eine Frage gekommen:
Es sei [mm]D=\IC[/mm]
Ist dann nicht jede Kurve [mm]C_0: t\rightarrow c_0(t)[/mm] mit
[mm]t \in [a;b][/mm] zu jeder beliebigen anderen Kurve [mm]c_1(t)[/mm] in D homotop, deren Parameter t ebenfalls nur beschränkt sein muß, meinetwegen auf [c,d]?
Dann ließe sich nämlich auf jeden Fall eine Abbildung z(s,t) finden dergestalt, daß
[mm]z(s,t)=(1-m)*c_0(a+(b-a)t)+m*c_1(c+(d-c)t)[/mm],
womit [mm]C_0[/mm] und [mm]C_1[/mm] homotop wären.
Oder lieg ich da etwa völlig daneben?
Damit wäre doch der Homotopiebegriff bei einem unbeschränkten Gebiet ohne Definitionslücken doch fast zwecklos, oder?
Was anderes ist das natürlich, wenn das Gebiet beschränkt ist und/oder "Löcher" hat und für Cauchy's Theorem...
Vielen Dank für die Hilfe im Voraus.
Gruß,
Christian
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:51 Mo 02.08.2004 | Autor: | andreas |
hi christian
größten respekt, dass du dich bei der vorbereitung zum mathematik-studium mit sowas beschaftigst. meine vorbereitung bestand damals eher aus urlaub machen.
also du betrachtest $D = [mm] \mathbb{C}$ [/mm] als gebiet und hast einen weg [mm] $c_0: [/mm] [0, 1] [mm] \longrightarrow \mathbb{C}$ [/mm] gegeben,wobei du stets vom intervall $[0, 1]$ ausgehen kannst, denn sei [mm] $\tilde{c}: [/mm] [a, b] [mm] \longrightarrow \mathbb{C}; [/mm] t [mm] \longmapsto \tilde{c}(t)$, [/mm] dann kannst du umparametriesieren und erhältst durch $c: [0, 1] [mm] \longrightarrow \mathbb{C}; [/mm] t [mm] \longmapsto \tilde{c}(t(b-a) [/mm] + a))$ die selbe kurve mit dem parameter intervall $[0, 1]$. meines wissens nach werden kurven stets durch kompakte - also insbesondese beschränkte - intervalle parametrisiert.
nun zurück zu deiner eigentlichen frage: du hast ja selbst schon eine homotopie zwischen zwei beliebigen wegen [mm] $c_0, c_1$ [/mm] angegeben, nämlich:
$h: [0, [mm] 1]^2 \longrightarrow \mathbb{C}; [/mm] (s, t) [mm] \longmapsto (1-s)c_0(t) [/mm] + [mm] sc_1(t) [/mm] $. damit hast du dann auch schon gezeigt, dass in [mm] $\mathbb{C}$ [/mm] alle wege homotop zueinander sind.
in der topologie untersucht man mit dem homotopie begriff auch gewisse strukturen von gebieten und führt dabei den begriff der geschlossenen homotopie ein, wobei man dabei nur kurven betrachtet, die den selben anfangs- und endpunkt haben (also [mm] $c_0(0) [/mm] = [mm] c_1(0), c_0(1) [/mm] = [mm] c_1(1)$, [/mm] ich weiß nicht inwiefern das bei deiner obigen frage auch vorausgesetzt wurde?) und nennt die kurven [mm] $c_0$ [/mm] und [mm] $c_1$ [/mm] geschlossen homotop, wenn es eine abbildung [m] h: [0,1]^2 \longrightarrow X [/m] gibt, mit $h(0, t) = [mm] c_0(t)$ [/mm] und $h(1, t) = [mm] c_1(t)$ [/mm] und es gilt $h(s, 0) = [mm] c_0(0) [/mm] = [mm] c_1(0)$ [/mm] und $h(s, 1) = [mm] c_0(1) [/mm] = [mm] c_1(1)$. [/mm] hierbei wird durch die letzten beiden forderungen garantiert, dass bei der homotopie die beiden endpunkte festgehalten werden, was natürlich einen stärkeren homotopie begriff generiet, also wonach weniger kurven homotop zueinander sind, als bei dem oben genannten, der meines wissens nach mit freier homotopie bezeichnet wird.
bei geschlossener homotopie ist entscheidend, dass zwei beliebige pfade zueinander homotop sind, dass das gebiet keine 'löcher' besitzt. gebiete in denen alle geschlossene pfade (also pfade $c$ mit $c(0) = c(1)$) zum nullpfad (nullpfad [m] n: [0, 1] \longrightarrow X, t \longmapsto x_0 \in X [/m]) homotop sind nennt man auch einfach zusammenhängend (hast du bestimmt schonmal gelesen, wenn du dich mit cauchy's theorem auseinander gesetzt hast).
vielleicht hilft dir das ja ein bisschen weiter. sonst frage einfach nochmal nach.
andreas
|
|
|
|
|
Hallo.
Danke für die Hilfe soweit.
Ich komm mir schon wieder so blöd vor...
Für stückweise dif.bare, geschlossene Wege C wird
[mm]n(C,a)=\bruch{1} {2*\pi*i}\integral_{C}^{} \bruch{dz} {z-a}[/mm]
als die Umlaufzahl von C bezüglich a definiert.
Müßte das Integral nach Caucy's Theorem nicht dagegen immer 0 sein?!?
Ein wiederum verwirrter
Christian
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:49 Di 03.08.2004 | Autor: | andreas |
hi christian
> Danke für die Hilfe soweit.
> Ich komm mir schon wieder so blöd vor...
nicht nötig. wie ich schon geschrieben habe beschäftigen sich die wenigsten vor beginn ihres studiums mit funktionentheorie und überstehen ihr studium trotzdem recht gut. daher ist es wirklich nicht weiter schlimm, wenn dir am anfang nicht alles klar ist!
> Für stückweise dif.bare, geschlossene Wege C wird
> [mm]n(C,a)=\bruch{1} {2*\pi*i}\integral_{C}^{} \bruch{dz} {z-a}[/mm]
>
> als die Umlaufzahl von C bezüglich a definiert.
> Müßte das Integral nach Caucy's Theorem nicht dagegen
> immer 0 sein?!?
mal ein beispiel: betrachte $D = [mm] \mathbb{C}$, [/mm] $a = 0$ und als $C$ den einheitskreis: [mm] $\Gamma [/mm] := [mm] \{z \in \mathbb{C}: |z| = 1\}$ [/mm] mit mathematisch positiver orientierung, also gegen den uhrzeigersinn.
dann kannst du $n(C, 0)$ ganz elementar berechnen (betrachte dabei die parametrisierung [m] C: [0, 2\pi] \longrightarrow \mathbb{C}; t \longmapsto e^{it} \; \Longrightarrow \; \text{d}z = \dfrac{\text{d}z}{\text{d}t} \text{d}t = ie^{it} \text{d}t[/m]):
[m] \displaystyle{ n(C, 0) = \dfrac{1}{2i\pi} \int_C \dfrac{\text{d}z}{z} = \dfrac{1}{2i\pi} \int_0^{2\pi} \dfrac{ ie^{it} \text{d}t}{e^{it}} = \dfrac{1}{2\pi} \int_0^{2\pi} e^{it - it} \text{d}t = \dfrac{1}{2\pi} \int_0^{2\pi} \text{d}t = \dfrac{2\pi}{2\pi} = 1 } [/m]
das ist ja auch das was du anschaulich erwartest, da [m] C [/m] genau einmal den ursprung umläuft.
das inetgral ist nach cauchy's theorem nicht null, da dafür die funktion [m] f(z) = \frac{1}{z-a} [/m] holomorph (also komplex differenzierbar) in der von der kurve umschlossenen gebiet sein müsste, was sie nicht sein kann, da sie im punkt [m] z_0 = a [/m] sogar einen pol hat und deshalb dort erst recht nicht differenzierbar sein kann!
andreas
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:24 Di 03.08.2004 | Autor: | Christian |
Danke nochmal.
Das hat mir echt weitergeholfen.
Ich denke, ich sollte mich wirklich von dem Skript trenne, aus dem ich momentan lerne, denn darin stand kein Wort davon, daß f für Cauchy's Theorem holomorph sein muß.
Gruß,
Christian
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:22 Di 03.08.2004 | Autor: | andreas |
hi christian
wenn du skripte suchst, dann sind hier verschiedene verlinkt. ich weiß aber nicht wie gut oder schlecht die sind.
andreas
|
|
|
|