www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraHyperebenenspiegelungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Hyperebenenspiegelungen
Hyperebenenspiegelungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hyperebenenspiegelungen: Frage
Status: (Frage) für Interessierte Status 
Datum: 19:46 Do 30.06.2005
Autor: Moe007

Hallo Mathefreaks,
ich hoffe es kann mir jemand bei folgender Aufgabe weiter helfen, weil ich hab keine Ahnung, wie ich da vorgehen soll.
Gegeben sei der  [mm] \IR^{3} [/mm] mit dem Standardskalarprodukt und kan. Basis und die darst. Matrix A eines Endorm. f:

A=  [mm] \pmat{ 4/5 & 0 & 3/5 \\ 0 & -1 & 0 \\ -3/5 & 0 & 4/5 } [/mm]

Man soll zunächst zeigen, dass f orthogonal ist. Da hab ich einfach die Eigenschaft ausgenutzt, dass wenn die darst. Matrix A orthogonal ist, dann ist f auch orthogonal. A ist orthogonal, da [mm] A^{t}A [/mm] = E ist. Außerdem sieht man beim genauen Hinschauen, dass die Spalten von A jeweils senkrecht aufeinander stehen.

Dann soll man aber zeigen, dass f in ein Produkt von Hyperebenenspiegelungen zerlegbar ist.  f ist ja eine Spigelung, weil det f = -1 ist. Wie zerlegt man aber diese Spiegelung in ein Produkt von Hyperebenenspiegelungen?? Ich weiß, dass Hyperebenen eine Dim. kleiner sind als der ganze Raum, in dem Fall also dim 2.
Ich hoffe es kann mir jemand einen Tipp geben, wie ich da vorzugehen hab.
Danke. Moe

        
Bezug
Hyperebenenspiegelungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:11 Do 30.06.2005
Autor: DaMenge

Hi,

dies gehört zum 9er Zettel der gesperrten LA-Seite,
also abwarten, wie der WebMaster entscheidet !

bis dahin ist's (noch?) sichtbar für Interessierte.
viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]