www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikHypergeometrische Verteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastik" - Hypergeometrische Verteilung
Hypergeometrische Verteilung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hypergeometrische Verteilung: Parameter
Status: (Frage) beantwortet Status 
Datum: 16:57 Fr 04.09.2009
Autor: itil

Aufgabe
Stochastik:

Im Rahmen einer 100%igen Prüfungen erhält man das Ergebnis,
dass von 200 prod. Tuben nur 4 mangelhaft waren.

Berechnen Sie die Wahrschendlcihkeit, dass in einer Stichprobe
Umfang 20 Stk. mehr als 2 mangehalft produzierte Tuben enthalten sind.


Hypergeometrische Verteilung ist zu wählen, da Ziehen ohne zurücklegen = man kann eine Tube nicht 2 mal testen - also sie nciht wieder zurücklegen.

P(x=k) = [mm] \bruch{\vektor{M \\ k} * \pmat{ N- & n- \\ M & k }}{\vektor{N \\ n}} [/mm]

k = 0,1,2 (P(x>2) = 1-(P(x=0)+P(x=1)+P(x=2))
M = 4
n = 20
N = 200

macht mir dann:

P(x=0) = 0,9029
P(x=1) = 3,6119
P(x=2) = 5,4179
______________
Summe = 9,93283

1- 9,93283 = -8,93283 ?? x 100 = -893,28% ?? iwo dürfte ich was falsch haben, ich nehme an M (anzahl der Merkmalsträger in N) dürfte falsch sein.

oder? wo haperts?

danke schon mal!

        
Bezug
Hypergeometrische Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Fr 04.09.2009
Autor: zetamy

Hallo,

> P(x=k) = [mm]\bruch{\vektor{M \\ k} * \pmat{ N- & n- \\ M & k }}{\vektor{N \\ n}}[/mm]

Die Formel ist fehlerhaft, richtig heißt sie $P(x=k) = [mm] \frac{\pmat{M \\ k}\cdot\pmat{N-M \\ n-k}}{\vektor{N \\ n}}$ [/mm]

> k = 0,1,2 (P(x>2) = 1-(P(x=0)+P(x=1)+P(x=2))
>  M = 4
>  n = 20
>  N = 200
>  
> macht mir dann:
>  
> P(x=0) = 0,9029
>  P(x=1) = 3,6119
>  P(x=2) = 5,4179

Die Wahrscheinlichkeiten für $x=1,x=2$ können natürlich nicht stimmen. Für $x=0$ ist sie auch nicht korrekt, sondern

$P(x=0) = [mm] \frac{\pmat{4 \\ 0}\cdot\pmat{200-4 \\ 20-0}}{\vektor{200 \\ 20}} [/mm] = [mm] \frac{1\cdot\frac{196!}{20!176!}}{\frac{200!}{20!180!}} [/mm] = [mm] \frac{196!\cdot 180!\cdot 180!}{200!\cdot 176!}\approx [/mm] 0,6539$.

Soweit erstmal, Gruß,

zetamy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]