www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik/HypothesentestsHypothese
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Statistik/Hypothesentests" - Hypothese
Hypothese < Statistik/Hypothesen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hypothese: Tip
Status: (Frage) beantwortet Status 
Datum: 11:58 Sa 26.03.2011
Autor: Dust

Aufgabe
Eine Gastätte nimmt in ihre Getränkekarte Wein des Einguts "Reblaus" auf. Der Gastwirt glaubt dadurch mehr als 25% seiner Gäste als Getränk Wein bestellen werden. Nach einer Einführungsphase macht er mit 100 Gästen einen Test, um zu überprüfen, ob seine Vermutung zutrifft. Dabei geht er von der Befürchtung aus, dass seine Annahme falsch ist.

Aufgabe 3c) Geben sie den Ablehnungs und Annahmebereich des Tests an, wenn der Test mit einer Sicherheitswahrscheinlichkeit von 95% durchgeführt werden soll.

Guten Tag,

Diese Aufgabe ist Teil einer Einsendeaufgabe. Ich hoffe ihr könnt mir  trotzdem helfen.

In meinen Lernheft steht folgender Satz

Zitat:"Dann wird eine Sicherheitswahrscheinlichkeit [mm] \alpha [/mm] festgelegt, die auch als Signifikanzniveau bezeichnet wird " Zitat ende.

Da in Aufgabe 3c) die Sicherheitswahrscheinlichkeit [mm] 95 [/mm]% ist, muss ,wenn ich das richtig verstehe, das Signifikanzniveau bei 0,95 liegen.

Anderfalls müsste es bei [mm] 1- \alpha [/mm] = 0,05 liegen.


Es wäre dann bei [mm] \alpha [/mm] = 0,95

[mm] µ(X) = 100 * 0,25 = 25 [/mm] und

[mm] \sigma(X) = \wurzel{ 100 * 0,25 * 0,75 } = \wurzel {18,75} =4,33 [/mm]

Aus [mm] P(X \le k) = \phi \left( \bruch{ k-25}{4,33,}\right) \le 0,95 [/mm]

Daraus folgt unter zuhilfenahme  der mir vorliegenden Tabelle für die Gaußsche Summenfunktion für 0,95 = 1,64.



[mm] \bruch{k-25} {4,33} \le 1,64 [/mm]

daraus folgt

[mm] k \le 4,33 * 1,64 + 25 [/mm]

[mm] k \le 32,10 [/mm]

Würde Ich aber mit [mm] 1 - \alpha [/mm] rechnen, dann läge der Wert der Gaußschen Summerfunktion [mm] \phi(X) [/mm] bei -1,64.

Und dann habe Ich als Ergebnis = k [mm] \le [/mm] 17,89  


Dieser einfache Satz, der eigentlich eindeutig ist, macht mich unsicher.

Vielen Dank für euere Hilfe.

Ich habe diese Frage in keinen anderen Forum gestellt

Gruß Dust



        
Bezug
Hypothese: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Sa 26.03.2011
Autor: Zwerglein

Hi, Dust,

> Eine Gastätte nimmt in ihre Getränkekarte Wein des
> Einguts "Reblaus" auf. Der Gastwirt glaubt dadurch mehr als
> 25% seiner Gäste als Getränk Wein bestellen werden. Nach
> einer Einführungsphase macht er mit 100 Gästen einen
> Test, um zu überprüfen, ob seine Vermutung zutrifft.
> Dabei geht er von der Befürchtung aus, dass seine Annahme
> falsch ist.
>
> Aufgabe 3c) Geben sie den Ablehnungs und Annahmebereich des
> Tests an, wenn der Test mit einer
> Sicherheitswahrscheinlichkeit von 95% durchgeführt werden
> soll.
> Guten Tag,
>
> Diese Aufgabe ist Teil einer Einsendeaufgabe. Ich hoffe ihr
> könnt mir trotzdem helfen.

Naja, halt nur "ganz allgemein"!

> In meinen Lernheft steht folgender Satz
>
> Zitat:"Dann wird eine Sicherheitswahrscheinlichkeit [mm]\alpha[/mm]
> festgelegt, die auch als Signifikanzniveau bezeichnet wird
> " Zitat ende.

Das ist falsch! Das Signifikanzniveau ist die Obergrenze der Wahrscheinlichkeiten des Fehlers 1. Art und somit hier 0,05, nicht aber 0,95.

> Da in Aufgabe 3c) die Sicherheitswahrscheinlichkeit [mm]95 [/mm]%
> ist, muss ,wenn ich das richtig verstehe, das
> Signifikanzniveau bei 0,95 liegen.
>
> Anderfalls müsste es bei [mm]1- \alpha[/mm] = 0,05 liegen.

Siehe meine obige Bemerkung!

> Es wäre dann bei [mm]\alpha[/mm] = 0,95

Nö! [mm] \alpha [/mm] = 0,05

> [mm]µ(X) = 100 * 0,25 = 25[/mm] und
>
> [mm]\sigma(X) = \wurzel{ 100 * 0,25 * 0,75 } = \wurzel {18,75} =4,33[/mm]
>
> Aus [mm]P(X \le k) = \phi \left( \bruch{ k-25}{4,33,}\right) \le 0,95[/mm]
>
> Daraus folgt unter zuhilfenahme der mir vorliegenden
> Tabelle für die Gaußsche Summenfunktion für 0,95 =
> 1,64.

Mal was Banales: Warum nimmst Du hier denn die Normalverteilung?
Das lässt sich doch direkt (und somit ohne Näherung) mit der Binomialverteilung lösen!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]