www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikHypothese mit Würfel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Hypothese mit Würfel
Hypothese mit Würfel < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hypothese mit Würfel: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:53 Mi 21.01.2009
Autor: Nataliee

Aufgabe
Bei einem Würfel besteht der Verdacht, dass die Wahrscheinlichkeit p für das Auftreten des Ereignisses ”6” beim einmaligen Werfen des Würfels kleiner als [mm] \bruch{1}{6} [/mm] ist. Man wirft daher den Würfel n=60 mal und möchte die Hypothese [mm] H_0 [/mm] : p>= [mm] \bruch{1}{6} [/mm] gegen die Alternative [mm] H_1 [/mm] : p < [mm] \bruch{1}{6} [/mm]  zum Niveau [mm] \alpha [/mm] = 0.1
testen.
(a) Geben Sie die genaue Testvorschrift und die effektive Irrtumswahrscheinlichkeit an. Begründen Sie die Wahl des kritischen Wertes c durch die Angabe der entsprechenden Tabellenwerte.


Hallo Matheraum-Mitglieder,
mein Klausurvorbereitung hat mich nun zu dieser Aufgabe geführt hoffe ihr könnt mir ein wenig beistehen.

Schönen Gruß

        
Bezug
Hypothese mit Würfel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:55 Mi 21.01.2009
Autor: Nataliee

siehe Frage
Bezug
        
Bezug
Hypothese mit Würfel: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:29 Do 22.01.2009
Autor: Nataliee

Habe jetz mein Problem entdeckt:
a) $ [mm] H_0 [/mm] $ : p>= $ [mm] \bruch{1}{6} [/mm] $ , $ [mm] H_1 [/mm] $ : p < $ [mm] \bruch{1}{6} [/mm] $,$ [mm] \alpha [/mm] $ = 0.1 ,n=60.
i)Testvorschrift:
Für $ [mm] H_0 [/mm] $  $ : p>= $ $ [mm] \bruch{1}{6} [/mm] $ wird der Verdacht nicht bestätigt.
Für $ [mm] H_1 [/mm] $ : p < $ [mm] \bruch{1}{6} [/mm] $ wird der Verdacht bestätigt.

[mm] x_1,...,x_n [/mm] i.i.d, B(1,p)-verteilt. [mm] x_i=1 [/mm] := i-ter Wurf ist eine 6.
Verwerfungsbereich V:={x  [mm] \in \{0,1\}^{60}:\summe_{i=1}^{60}x_i \ge [/mm]  c}, $ [mm] \varphi =\begin{cases} 1, & \mbox{für } x \in V\\ 0, & \mbox{für } sonst \end{cases} [/mm] $
[mm] \pi_\varphi (p)=p(\varphi(x)=1)= P(\summe_{i=1}^{60}x_i \ge [/mm] c) = [mm] \summe_{k=c}^{60}P(\summe_{i=1}^{60}x_i [/mm] = k) = [mm] \summe_{k=c}^{60} \vektor{60\\k}p^k*(1-p)^{60-k}=^d [/mm] B(60,p)

[mm] \pi_\varphi(0,1)=\summe_{k=c}^{60} \vektor{60\\k}(\bruch{1}{6})^k*(\bruch{5}{6})^{60-k}\le \alpha [/mm] =0,1 [mm] \gdw [/mm] c [mm] \ge15 [/mm]

Ich habe Anhand einer Binomial Tabelle mit n=60 für die W-keit p=1/6 geguckt wann der Wert unter 0,1 fällt. Ist das so richtig?

Bezug
                
Bezug
Hypothese mit Würfel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Sa 24.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Hypothese mit Würfel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Sa 24.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]