www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraische GeometrieI(X) ist ideal in R[x1,...xn]
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebraische Geometrie" - I(X) ist ideal in R[x1,...xn]
I(X) ist ideal in R[x1,...xn] < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

I(X) ist ideal in R[x1,...xn]: Frage
Status: (Frage) beantwortet Status 
Datum: 14:09 Mi 10.11.2004
Autor: evchen

X teilmenge von [mm] R^n, [/mm] sei I(x)={P element R[x1,...,xn],P(a)=0 für alle a element X}. jetz muss ich zeigen dass I(X) ist ideal in R[x1,...xn]. wie mach ich das? weiters soll ich dann jeweils zwei spezielle Teilmengen X in [mm] R^n [/mm] für n=1,2,3 (nicht tragisch ob Punkte, geraden, flächen od vereinigungen davon) und bestimme ein EZS von I(X).
mein problem ist ich hab die letzten 3 vorlesungen versäumt weil ich krank war. hoffe sehr ihr könnt mir helfen od mir zumindest einen ansatz liefern.

danke im voraus, lg eva

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
I(X) ist ideal in R[x1,...xn]: Ideale
Status: (Antwort) fertig Status 
Datum: 17:54 Mi 10.11.2004
Autor: Gnometech

Hallo Eva!

Zunächst mal: ist Dir klar, was Du zeigen mußt, damit Du ein Ideal hast?

Du hast $I(X) [mm] \subseteq \IR [x_1, \ldots x_n]$ [/mm] gegeben und letzteres ist ein Ring. (Ich nehme mal an, dass ihr es für die reellen Zahlen macht - aber falls Dein $R$ einen beliebigen kommutativen Ring meint, dann nur zu.)

Um zu zeigen, dass es sich bei $I(X)$ um ein Ideal handelt, reicht es zu sehen, dass

i) $0 [mm] \in [/mm] I(X)$ (das ist nicht so schwer)
ii) Für $f, g [mm] \in [/mm] I(X)$ gilt: $f + g [mm] \in [/mm] I(X)$.
iii) Für $f [mm] \in [/mm] I(X)$ und $h [mm] \in \IR [/mm] [ [mm] x_1, \ldots, x_n [/mm] ]$, wobei $h$ wirklich ein beliebiges Polynom ist, gilt: $f [mm] \cdot [/mm] h [mm] \in [/mm] I(X)$.

All das ist nicht schwer - versprochen! :-)

Und für die Beispiele würde ich für $n = 2$ unkomplizierte Teilmengen nehmen (z.B. die [mm] $x_1$-Achse) [/mm] und dafür das Verschwindungsideal berechnen.

Interessant wird es erst, wenn diese Konzepte verallgemeinert werden. Ist das eine allgemeine Algebra-Vorlesung oder eine algebraische Geometrie?

Viel Erfolg auf jeden Fall!

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]