www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperIdeal, Primideal, Max. Ideal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Ideal, Primideal, Max. Ideal
Ideal, Primideal, Max. Ideal < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ideal, Primideal, Max. Ideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:01 Mi 13.04.2011
Autor: xtraxtra

Aufgabe
Zeigen Sie, dass [mm] I=\{P\in\IQ[X] | P(0)=0\} [/mm] ein Ideal in [mm] \IQ[X] [/mm] ist. Man gebe ein [mm] Q\in\IQ[X] [/mm] an mit I=(Q). Ist I ein Primideal, ein maximales Ideal?

Guten Morgen.
Leider habe ich hier schon sehr große Probleme mit der Angabe und der Aufgabe selbst.
[mm] I=\{P\in\IQ[X] | P(0)=0\} [/mm] heißt dass, dass I aus allen Polynomen besteht, bei denen [mm] a_0=0 [/mm] ist?
Und was soll I=(Q) sein? Wäre sehr nett, wenn sich jmd die Mühe machen würde und das ganze etwas für mich aufdrößeln würde.


Ich habe sogar eine Lösung für die Aufgabe, nachdem ich aber nichtmal die Aufgabenstellung wirklich verstehe bringt die mir natürlich eher wenig. Trotzdem der Vollständigkeit halber:
I ist Ideal als Kern des Ringhomomorphismus [mm] \phi: \IQ[X]\to\IQ, (X)\mapsto [/mm] f(0). Es gilt I=(X). Da [mm] \phi [/mm] ein Isomorphismus [mm] \IQ[X]/I\to\IQ [/mm] auf einem Körper irreduzibel, ist Imaximal und erst recht prim.

        
Bezug
Ideal, Primideal, Max. Ideal: Antwort
Status: (Antwort) fertig Status 
Datum: 11:06 Mi 13.04.2011
Autor: fred97


> Zeigen Sie, dass [mm]I=\{P\in\IQ[X] | P(0)=0\}[/mm] ein Ideal in
> [mm]\IQ[X][/mm] ist. Man gebe ein [mm]Q\in\IQ[X][/mm] an mit I=(Q). Ist I ein
> Primideal, ein maximales Ideal?
>  Guten Morgen.
>  Leider habe ich hier schon sehr große Probleme mit der
> Angabe und der Aufgabe selbst.
> [mm]I=\{P\in\IQ[X] | P(0)=0\}[/mm] heißt dass, dass I aus allen
> Polynomen besteht, bei denen [mm]a_0=0[/mm] ist?

Ja


>  Und was soll I=(Q) sein?

Das bedeutet: Q erzeugt das Ideal I


FRED


Wäre sehr nett, wenn sich jmd

> die Mühe machen würde und das ganze etwas für mich
> aufdrößeln würde.
>  
>
> Ich habe sogar eine Lösung für die Aufgabe, nachdem ich
> aber nichtmal die Aufgabenstellung wirklich verstehe bringt
> die mir natürlich eher wenig. Trotzdem der
> Vollständigkeit halber:
>  I ist Ideal als Kern des Ringhomomorphismus [mm]\phi: \IQ[X]\to\IQ, (X)\mapsto[/mm]
> f(0). Es gilt I=(X). Da [mm]\phi[/mm] ein Isomorphismus
> [mm]\IQ[X]/I\to\IQ[/mm] auf einem Körper irreduzibel, ist Imaximal
> und erst recht prim.


Bezug
                
Bezug
Ideal, Primideal, Max. Ideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:45 Mi 13.04.2011
Autor: xtraxtra


> >  Und was soll I=(Q) sein?

> Das bedeutet: Q erzeugt das Ideal I

Ok, dann verstehe ich wieso I=(X) ist.
Aber was hat das mit dem Ringhomomorphismus auf sich?

Bezug
                        
Bezug
Ideal, Primideal, Max. Ideal: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Mi 13.04.2011
Autor: fred97


> > >  Und was soll I=(Q) sein?

>  
> > Das bedeutet: Q erzeugt das Ideal I
> Ok, dann verstehe ich wieso I=(X) ist.
>  Aber was hat das mit dem Ringhomomorphismus auf sich?

Du hast den Ringhomomorphismus  $ [mm] \phi: \IQ[X]\to\IQ, [/mm] $,   [mm] $\phi(p)=p(0)$ [/mm]

Dann ist doch [mm] $I=kern(\phi)$ [/mm]  und [mm] kern(\phi) [/mm] ist ein Ideal.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]