www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperIdeale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Ideale
Ideale < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ideale: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 14:09 Fr 12.09.2008
Autor: Irmchen

Guten Tag alle zusammen!

Ich habe in der Vorlesung eine Bemerkung gefunden, zu der ich eine Frage habe.

Bemerkung:

Ideale sind genau die Kerne der Ringhomomorphismen.

Diese Behauptung kann ich sogar beweisen. Leider sehe ich hierbei nicht den tiefgründigen Sinn.. Und was ich noch nicht nachvollziehen kann, ist, warum die Bilder der Ringhomomorphismen nicht immer  Ideale sind.

Ich hoffe, dass mir da jemand helfen kann!

Vielen Dank!

Viele Grüße
Irmchen

        
Bezug
Ideale: etwas dazu
Status: (Antwort) fertig Status 
Datum: 14:52 Fr 12.09.2008
Autor: statler

Hallo Irmchen!

> Ich habe in der Vorlesung eine Bemerkung gefunden, zu der
> ich eine Frage habe.
>  
> Bemerkung:
>  
> Ideale sind genau die Kerne der Ringhomomorphismen.
>  
> Diese Behauptung kann ich sogar beweisen. Leider sehe ich
> hierbei nicht den tiefgründigen Sinn. Und was ich noch
> nicht nachvollziehen kann, ist, warum die Bilder der
> Ringhomomorphismen nicht immer  Ideale sind.

Der tiefere Sinn liegt darin, daß man generell versucht, einen Überblick über die Struktur von Ringen zu erhalten. Ein Mittel dazu ist auch die Untersuchung der möglichen Abbildungen zwischen ihnen, und deren Kerne sind eben die Ideale. Wenn ich alle Ideale eines Ringes kenne, kenne ich alle seine surjektiven Bilder (cum grano salis).

In erster Näherung sortiert man die Ringe nach ihren Idealen: gar keine Ideale, nur Hauptideale, alle Ideale endlich erzeugt, alle Ideale Produkt von Primidealen, genau ein maximales Ideal,... (es gibt da viele Varianten)

Daß das Bild eines Ringes nicht immer ein Ideal ist, siehst du sofort, wenn du die Einbettung von [mm] \IZ [/mm] in [mm] \IQ [/mm] betrachtest.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Ideale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:13 Fr 12.09.2008
Autor: Irmchen

Hallo Dieter!

Danke für Deinen Beitrag!
Jedoch habe ich noch nicht alles verstanden.

Zu Deiner Bemerkung:

> Daß das Bild eines Ringes nicht immer ein Ideal ist, siehst
> du sofort, wenn du die Einbettung von [mm]\IZ[/mm] in [mm]\IQ[/mm]
> betrachtest.  

Also, [mm] \IQ [/mm] ist ein kommutativer Ring und [mm] \IZ [/mm] eine Teilmenge von [mm] \IQ [/mm].
Aber [mm] \IZ [/mm] ist keine Ideal bezüglich diesen Ringes.

Ich sehe hier leider nicht worauf Du hinaus möchtest ... :-(

Vielen Dank!

Viele Grüße
Irmchen

Bezug
                        
Bezug
Ideale: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 Fr 12.09.2008
Autor: statler

Hi Irmchen!

> Zu Deiner Bemerkung:
>  
> > Daß das Bild eines Ringes nicht immer ein Ideal ist, siehst
> > du sofort, wenn du die Einbettung von [mm]\IZ[/mm] in [mm]\IQ[/mm]
> > betrachtest.  
>
> Also, [mm]\IQ[/mm] ist ein kommutativer Ring und [mm]\IZ[/mm] eine Teilmenge

...sogar ein Unterring....

> von [mm]\IQ [/mm].
> Aber [mm]\IZ[/mm] ist kein Ideal bezüglich dieses Ringes.
>  
> Ich sehe hier leider nicht worauf Du hinaus möchtest ...
> :-(

Naja, [mm] \IZ [/mm] ist das Bild von [mm] \IZ, [/mm] aber eben kein Ideal. [mm] \IQ [/mm] hat nur 2 (unechte) Ideale. Für eine solche Situation hast du doch ein Beispiel gesucht, oder?

Gruß und schönes WE
Dieter


Bezug
                                
Bezug
Ideale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:50 Sa 13.09.2008
Autor: Irmchen

Hallo!

Ja , sicher :-)!

Vielen Dank und eine schönes Wochenende!

Viele Grüße
Irmchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]