Ideale/Untermoduln in Z < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:55 Mi 30.05.2012 | Autor: | triad |
Aufgabe | a) Sei G eine abelsche Gruppe. Zeige, dass man G auf genau eine Weise mit einer [mm] $\IZ$-Modul-Struktur [/mm] versehen kann.
b) Bestimme alle Ideale in [mm] \IZ.
[/mm]
c) Bestimme alle Untermoduln des [mm] $\IZ$-Moduln $\IZ/12\IZ$. [/mm] |
zu a): Ich weiss nicht genau was hier verlangt ist. Heißt das, dass ich zu der abelschen Gruppe (G,+) eine Verknüpfung [mm] $*:\IZ\times G\to [/mm] G$ definieren soll so, dass G zu einem [mm] $\IZ$-Modul [/mm] wird?
zu c): [mm] $\IZ/12\IZ$ [/mm] ist ja [mm] \{\bar 0,\bar 1,...,\bar{11}\}, [/mm] die trivialen Untermoduln sind [mm] \{0\} [/mm] und [mm] $\IZ/12\IZ$. [/mm] Wie ist es mit [mm] $\IZ/2\IZ$ [/mm] bis [mm] $\IZ/11\IZ$, [/mm] die müssten auch Untermoduln sein, da es ja einfach Teilmengen sind? z.B. [mm] $\IZ/3\IZ$=\{\bar 0,\bar 1,\bar{2}\}\subset\{\bar 0,\bar 1,...,\bar{11}\}=$\IZ/12\IZ$. [/mm] Sonst müsste man eben zeigen, dass z.B. [mm] $\bar 1+\bar [/mm] 2 = [mm] \bar 3=\bar 0\in$ $\IZ /3\IZ$ [/mm] und [mm] 5*\bar 2=\bar{10}=\bar 1\in$\IZ /3\IZ$ [/mm] gilt, und das funktioniert ja für alle Elemente.
zu b): Hier auch wieder die trivialen [mm] \{0\}, \IZ [/mm] und [mm] 2\IZ [/mm] (Beispiele aus VL), aber welche noch? Sind es dann nicht auch alle Vielfachen von 2, [mm] \IZ/4\IZ, \IZ/6\IZ, [/mm] ... ? [mm] \IZ/2\IZ+1 [/mm] und ähnliche gehen nicht, weil die 0 nicht drin ist, d.h. es gibt dann keine weiteren.
Ich bin dankbar für jede Hilfe!
|
|
|
|
Hi,
ist zwar schon Weile her. Aber wenn ich mist baue, passt hier immer felix auf.
> a) Sei G eine abelsche Gruppe. Zeige, dass man G auf genau
> eine Weise mit einer [mm]\IZ[/mm]-Modul-Struktur versehen kann.
>
> b) Bestimme alle Ideale in [mm]\IZ.[/mm]
>
> c) Bestimme alle Untermoduln des [mm]\IZ[/mm]-Moduln [mm]\IZ/12\IZ[/mm].
>
> zu a): Ich weiss nicht genau was hier verlangt ist. Heißt
> das, dass ich zu der abelschen Gruppe (G,+) eine
> Verknüpfung [mm]*:\IZ\times G\to G[/mm] definieren soll so, dass G
> zu einem [mm]\IZ[/mm]-Modul wird?
Ja eine Abbildung solltest du angeben und noch sagen, warum es nur so geht. Wie die Abbildung aussieht steht ja fast schon da.
>
> zu c): [mm]\IZ/12\IZ[/mm] ist ja [mm]\{\bar 0,\bar 1,...,\bar{11}\},[/mm] die
> trivialen Untermoduln sind [mm]\{0\}[/mm] und [mm]\IZ/12\IZ[/mm]. Wie ist es
> mit [mm]\IZ/2\IZ[/mm] bis [mm]\IZ/11\IZ[/mm], die müssten auch Untermoduln
> sein, da es ja einfach Teilmengen sind? z.B. [mm]\IZ/3\IZ[/mm][mm] =\{\bar 0,\bar 1,\bar{2}\}\subset\{\bar 0,\bar 1,...,\bar{11}\}=[/mm]
> [mm]\IZ/12\IZ[/mm]. Sonst müsste man eben zeigen, dass z.B. [mm]\bar 1+\bar 2 = \bar 3=\bar 0\in[/mm]
> [mm]\IZ /3\IZ[/mm] und [mm]5*\bar 2=\bar{10}=\bar 1\in[/mm] [mm]\IZ /3\IZ[/mm] gilt,
> und das funktioniert ja für alle Elemente.
[mm] $\IZ/3\IZ$ [/mm] ist ja sogar eine Untergruppe. Also insbes. auch Untermodul.
>
> zu b): Hier auch wieder die trivialen [mm]\{0\}, \IZ[/mm] und [mm]2\IZ[/mm]
> (Beispiele aus VL), aber welche noch? Sind es dann nicht
> auch alle Vielfachen von 2, [mm]\IZ/4\IZ, \IZ/6\IZ,[/mm] ... ?
> [mm]\IZ/2\IZ+1[/mm] und ähnliche gehen nicht, weil die 0 nicht drin
> ist, d.h. es gibt dann keine weiteren.
Stimmt es muss gelten [mm] $0_R\in \mathfrak{I}$
[/mm]
>
[mm] $41\IZ$ [/mm] ist z.b. auch ein (maximales) Ideal, da [mm] $\IZ/41\IZ$ [/mm] ein Körper ist. Es sollten alle Ideale [mm] $\mathfrak{I}$ [/mm] von [mm] $\IZ$ [/mm] die Bauart [mm] $\mathfrak{I}=(n)\quad,n\in\IN_0$ [/mm] haben. Denn jede Untergruppe in [mm] $\IZ$ [/mm] ist ein Ideal und umgekehrt.
> Ich bin dankbar für jede Hilfe!
.... ist noch nicht fertig
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:41 Do 31.05.2012 | Autor: | triad |
> Hi,
> ist zwar schon Weile her. Aber wenn ich mist baue, passt
> hier immer felix auf.
>
> > a) Sei G eine abelsche Gruppe. Zeige, dass man G auf genau
> > eine Weise mit einer [mm]\IZ[/mm]-Modul-Struktur versehen kann.
> >
> > b) Bestimme alle Ideale in [mm]\IZ.[/mm]
> >
> > c) Bestimme alle Untermoduln des [mm]\IZ[/mm]-Moduln [mm]\IZ/12\IZ[/mm].
> >
> > zu a): Ich weiss nicht genau was hier verlangt ist. Heißt
> > das, dass ich zu der abelschen Gruppe (G,+) eine
> > Verknüpfung [mm]*:\IZ\times G\to G[/mm] definieren soll so, dass G
> > zu einem [mm]\IZ[/mm]-Modul wird?
> Ja eine Abbildung solltest du angeben und noch sagen,
> warum es nur so geht. Wie die Abbildung aussieht steht ja
> fast schon da.
Bei der Abbildung fehlt ja nur noch die Abbildungsvorschrift, also
[mm] $*:\IZ\times G\to [/mm] G$ Wie sollte z.B. [mm] 5\cdot{}g [/mm] für [mm] $g\in [/mm] G$ aussehen?
[mm] $(z,g)\to r\cdot{}g$
[/mm]
Und wieso geht es nur so, das verstehe ich noch nicht?
>
> >
> > zu c): [mm]\IZ/12\IZ[/mm] ist ja [mm]\{\bar 0,\bar 1,...,\bar{11}\},[/mm] die
> > trivialen Untermoduln sind [mm]\{0\}[/mm] und [mm]\IZ/12\IZ[/mm]. Wie ist es
> > mit [mm]\IZ/2\IZ[/mm] bis [mm]\IZ/11\IZ[/mm], die müssten auch Untermoduln
> > sein, da es ja einfach Teilmengen sind? z.B. [mm]\IZ/3\IZ[/mm][mm] =\{\bar 0,\bar 1,\bar{2}\}\subset\{\bar 0,\bar 1,...,\bar{11}\}=[/mm]
> > [mm]\IZ/12\IZ[/mm]. Sonst müsste man eben zeigen, dass z.B. [mm]\bar 1+\bar 2 = \bar 3=\bar 0\in[/mm]
> > [mm]\IZ /3\IZ[/mm] und [mm]5*\bar 2=\bar{10}=\bar 1\in[/mm] [mm]\IZ /3\IZ[/mm] gilt,
> > und das funktioniert ja für alle Elemente.
> [mm]\IZ/3\IZ[/mm] ist ja sogar eine Untergruppe. Also insbes. auch
> Untermodul.
Also sind [mm] \{0\} [/mm] und [mm] \IZ/m\IZ, [/mm] mit [mm] m\in\{2,3,...,12\} [/mm] alle Untermoduln von [mm] \IZ/12\IZ?
[/mm]
> >
> > zu b): Hier auch wieder die trivialen [mm]\{0\}, \IZ[/mm] und [mm]2\IZ[/mm]
> > (Beispiele aus VL), aber welche noch? Sind es dann nicht
> > auch alle Vielfachen von 2, [mm]\IZ/4\IZ, \IZ/6\IZ,[/mm] ... ?
> > [mm]\IZ/2\IZ+1[/mm] und ähnliche gehen nicht, weil die 0 nicht drin
> > ist, d.h. es gibt dann keine weiteren.
> Stimmt es muss gelten [mm]0_R\in \mathfrak{I}[/mm]
> >
>
> [mm]41\IZ[/mm] ist z.b. auch ein (maximales) Ideal, da [mm]\IZ/41\IZ[/mm] ein
> Körper ist. Es sollten alle Ideale [mm]\mathfrak{I}[/mm] von [mm]\IZ[/mm]
> die Bauart [mm]\mathfrak{I}=(n)\quad,n\in\IN_0[/mm] haben. Denn jede
> Untergruppe in [mm]\IZ[/mm] ist ein Ideal und umgekehrt.
Was bedeutet [mm]\mathfrak{I}=(n)\quad,n\in\IN_0[/mm], dass [mm] \mathfrak{I} [/mm] von jedem n erzeugt werden kann?
Es soll bei a) bis c) auch noch gezeigt werden, dass es keine weiteren Weisen/Ideale/Untermoduln gibt. Wie genau stellt man das an?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:24 Do 31.05.2012 | Autor: | felixf |
Moin!
> > > a) Sei G eine abelsche Gruppe. Zeige, dass man G auf genau
> > > eine Weise mit einer [mm]\IZ[/mm]-Modul-Struktur versehen kann.
> > >
> > > b) Bestimme alle Ideale in [mm]\IZ.[/mm]
> > >
> > > c) Bestimme alle Untermoduln des [mm]\IZ[/mm]-Moduln [mm]\IZ/12\IZ[/mm].
> > >
> > > zu a): Ich weiss nicht genau was hier verlangt ist. Heißt
> > > das, dass ich zu der abelschen Gruppe (G,+) eine
> > > Verknüpfung [mm]*:\IZ\times G\to G[/mm] definieren soll so, dass G
> > > zu einem [mm]\IZ[/mm]-Modul wird?
> > Ja eine Abbildung solltest du angeben und noch sagen,
> > warum es nur so geht. Wie die Abbildung aussieht steht ja
> > fast schon da.
>
> Bei der Abbildung fehlt ja nur noch die
> Abbildungsvorschrift, also
>
> [mm]*:\IZ\times G\to G[/mm] Wie sollte z.B. [mm]5\cdot{}g[/mm] für
> [mm]g\in G[/mm] aussehen?
Naja, wieviele Moeglichkeiten gibt es denn? Das Element $5 [mm] \cdot [/mm] g$ muss sich irgendwie durch $g$ und $5$ beschreiben lassen.
Es muss doch $1 [mm] \cdot [/mm] g = g$ sein, und $(a + b) [mm] \cdot [/mm] g = (a [mm] \cdot [/mm] g) + (b [mm] \cdot [/mm] g)$ (jeweils: warum?). Mit diesen zwei Regeln kannst du herleiten, was $5 [mm] \cdot [/mm] g$ sein muss.
> [mm](z,g)\to r\cdot{}g[/mm]
>
> Und wieso geht es nur so, das verstehe ich noch nicht?
Wenn du das oben verstanden hast, was ich schrieb, dann sollte das auch kein Problem mehr sein.
> > > zu c): [mm]\IZ/12\IZ[/mm] ist ja [mm]\{\bar 0,\bar 1,...,\bar{11}\},[/mm] die
> > > trivialen Untermoduln sind [mm]\{0\}[/mm] und [mm]\IZ/12\IZ[/mm]. Wie ist es
> > > mit [mm]\IZ/2\IZ[/mm] bis [mm]\IZ/11\IZ[/mm], die müssten auch Untermoduln
> > > sein, da es ja einfach Teilmengen sind? z.B. [mm]\IZ/3\IZ[/mm][mm] =\{\bar 0,\bar 1,\bar{2}\}\subset\{\bar 0,\bar 1,...,\bar{11}\}=[/mm]
> > > [mm]\IZ/12\IZ[/mm]. Sonst müsste man eben zeigen, dass z.B. [mm]\bar 1+\bar 2 = \bar 3=\bar 0\in[/mm]
> > > [mm]\IZ /3\IZ[/mm] und [mm]5*\bar 2=\bar{10}=\bar 1\in[/mm] [mm]\IZ /3\IZ[/mm] gilt,
> > > und das funktioniert ja für alle Elemente.
> > [mm]\IZ/3\IZ[/mm] ist ja sogar eine Untergruppe. Also insbes.
> auch
> > Untermodul.
>
> Also sind [mm]\{0\}[/mm] und [mm]\IZ/m\IZ,[/mm] mit [mm]m\in\{2,3,...,12\}[/mm] alle
> Untermoduln von [mm]\IZ/12\IZ?[/mm]
Nein. Bis auf $m = 12$ sind es nichtmals Teilmengen.
Kennst du den Homomorphiesatz oder einen aehnlichen Satz, der etwas ueber die Ideale in $R$ (die $I$ enthalten) und die Ideale in $R/I$ aussagt? (Wird manchmal auch mit Homomorphismen ausgedrueckt, und/oder als Korrespondenzprinzip bezeichnet...)
Oder eine aehnliche Aussage fuer Untermoduln von Quotientenmoduln?
> > > zu b): Hier auch wieder die trivialen [mm]\{0\}, \IZ[/mm] und [mm]2\IZ[/mm]
> > > (Beispiele aus VL), aber welche noch? Sind es dann nicht
> > > auch alle Vielfachen von 2, [mm]\IZ/4\IZ, \IZ/6\IZ,[/mm] ... ?
> > > [mm]\IZ/2\IZ+1[/mm] und ähnliche gehen nicht, weil die 0 nicht drin
> > > ist, d.h. es gibt dann keine weiteren.
> > Stimmt es muss gelten [mm]0_R\in \mathfrak{I}[/mm]
> >
> > [mm]41\IZ[/mm] ist z.b. auch ein (maximales) Ideal, da [mm]\IZ/41\IZ[/mm] ein
> > Körper ist. Es sollten alle Ideale [mm]\mathfrak{I}[/mm] von [mm]\IZ[/mm]
> > die Bauart [mm]\mathfrak{I}=(n)\quad,n\in\IN_0[/mm] haben. Denn jede
> > Untergruppe in [mm]\IZ[/mm] ist ein Ideal und umgekehrt.
>
> Was bedeutet [mm]\mathfrak{I}=(n)\quad,n\in\IN_0[/mm], dass
> [mm]\mathfrak{I}[/mm] von jedem n erzeugt werden kann?
Nein! Es bedeutet: jedes Ideal ist ein Hauptideal. Also zu jedem Ideal [mm] $\mathfrak{I}$ [/mm] gibt es so ein $n [mm] \in \IN_0$ [/mm] (sogar ein eindeutiges $n$) mit [mm] $\mathfrak{I} [/mm] = (n)$.
> Es soll bei a) bis c) auch noch gezeigt werden, dass es
> keine weiteren Weisen/Ideale/Untermoduln gibt. Wie genau
> stellt man das an?
Bei b) kannst du per Division mit Rest zeigen, dass jedes Ideal ein Hauptideal ist (nehme das kleinste Element in [mm] $\IN \cap \mathfrak{I}$, [/mm] falls [mm] $\mathfrak{I} \neq \{ 0 \}$ [/mm] ist, und zeige dass es das Ideal erzeugt).
Bei c) verwendest du am besten den Homomorphiesatz / das Korrespondenzprinzip (falls ihr das hattet).
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:17 Do 31.05.2012 | Autor: | felixf |
Moin,
> ist zwar schon Weile her. Aber wenn ich mist baue, passt
> hier immer felix auf.
:)
> > zu c): [mm]\IZ/12\IZ[/mm] ist ja [mm]\{\bar 0,\bar 1,...,\bar{11}\},[/mm] die
> > trivialen Untermoduln sind [mm]\{0\}[/mm] und [mm]\IZ/12\IZ[/mm]. Wie ist es
> > mit [mm]\IZ/2\IZ[/mm] bis [mm]\IZ/11\IZ[/mm], die müssten auch Untermoduln
> > sein, da es ja einfach Teilmengen sind? z.B. [mm]\IZ/3\IZ[/mm][mm] =\{\bar 0,\bar 1,\bar{2}\}\subset\{\bar 0,\bar 1,...,\bar{11}\}=[/mm]
> > [mm]\IZ/12\IZ[/mm]. Sonst müsste man eben zeigen, dass z.B. [mm]\bar 1+\bar 2 = \bar 3=\bar 0\in[/mm]
> > [mm]\IZ /3\IZ[/mm] und [mm]5*\bar 2=\bar{10}=\bar 1\in[/mm] [mm]\IZ /3\IZ[/mm] gilt,
> > und das funktioniert ja für alle Elemente.
>
> [mm]\IZ/3\IZ[/mm] ist ja sogar eine Untergruppe. Also insbes. auch
> Untermodul.
Nein, es ist nichtmals Teilmenge, also insbesondere weder Untergruppe noch Untermodul.
Hingegen gibt es eine Untergruppe (sogar genau eine!), die isomorph zu [mm] $\IZ/3\IZ$ [/mm] ist. Diese ist u.a. auch ein Untermodul.
LG Felix
|
|
|
|