Ideale multiplizieren < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:38 Sa 14.02.2015 | Autor: | sissile |
Aufgabe | [mm] I*J=\{x_1y_1+...+x_ny_n|n\ge 0, x_1,..x_n \in I, y_1,..,y_n \in J\}
[/mm]
Es sind I und J Ideale vom Ring (R,+,*). Beweisen Sie:
a) I*J ist ein Ideal von R
b) I*J ist das von der Menge [mm] \{x,y|x \in I, y \in J\} [/mm] erzeugte Ideal von R. |
Hallo,
a) ist klar
b) habe ich so gelöst:
ZZ.: [mm] (\{x*y|x\in I, y\in J\})=I*J
[/mm]
[mm] \subseteq)
[/mm]
[mm] K=\{x*y|x\in I, y\in J\}
[/mm]
[mm] \forall [/mm] a [mm] \in [/mm] K [mm] \exists [/mm] x [mm] \in [/mm] I, [mm] y\in [/mm] J: [mm] a=xy\in [/mm] I*J mit n=1, [mm] x_1=x,y_1=y
[/mm]
[mm] \Rightarrow [/mm] K [mm] \subseteq [/mm] I*J
[mm] \Rightarrow [/mm] (K) [mm] \subseteq [/mm] I*J
[mm] \supseteq)
[/mm]
Sei a [mm] \in [/mm] I*J dh. [mm] \exists x_1,..x_n \in [/mm] I, [mm] y_1,..,y_n \in [/mm] J mit n [mm] \ge [/mm] 0
[mm] a=x_1y_1+..+x_ny_n
[/mm]
Nun ist [mm] x_sy_s \in [/mm] K [mm] \forall [/mm] s [mm] \in \{1,..n\}
[/mm]
da K [mm] \subseteq [/mm] (K) folgt [mm] x_s y_s \in [/mm] (K) [mm] \forall s\in \{1,..,n\}
[/mm]
(K) ist ein Ideal und damit abgeschlossen unter der Addtiion
[mm] \Rightarrow x_1y_1+..+x_ny_n \in [/mm] (K)
[mm] \Rightarrow [/mm] IJ [mm] \subseteq [/mm] (K)
Passt das?
Frage dazu:
Im Allgemeinen ist das Komplexprodukt $ [mm] \{x,y|x \in I, y \in J\} [/mm] $kein Ideal aber ist das Komplexprodukt überhaupt ein Ring?
Wir hatten: Sind U,V Untergruppen der Gruppe G mit UV=VU [mm] \Rightarrow [/mm] UV [mm] \le [/mm] G.
Ich weiß, jedes Ideal I ist als (I,+) ein Normalteiler von (R,+).
Aber das hilft mir hier nicht weiter, da das Komplexprodukt UV von den Untergruppen dann additiv geschrieben für U+V steht und ich will ja die Multiplikation.
|
|
|
|
Ja, das passt. Bei mir haben Ringe eine Eins, die Frage ob ein Ideal ein Unterring ist, erübrigt sich damit. Aber $ K $ ist im Allgemeinen keine additive Untergruppe, wenn es dir darum geht. Falls etwa $ [mm] R=\IZ [X_1, X_2, Y_1, Y_2] [/mm] $, $ [mm] I=(X_1, X_2) [/mm] $, $ [mm] J=(Y_1, Y_2) [/mm] $ liegen [mm] $X_1Y_1$ [/mm] und $ [mm] X_2Y_2$ [/mm] beide im Komplexprodukt von $ I $ und $ J $, aber nicht ihre Summe.
Liebe Grüße,
UniversellesObjekt
|
|
|
|