Ideale und Varietäten < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Gegeben sei das Ideal J = [mm] (X^{2} [/mm] + [mm] Y^{2} [/mm] - 1,Y - 1) [mm] \subset [/mm] K[X,Y]
(a) Bestimmen Sie die Varietät V(J) und ihr Ideal
I(V(J)) := { f [mm] \in [/mm] K[X,Y] | f(x,y) = 0 [mm] \forall [/mm] (x,y) [mm] \in [/mm] V(J)}
(b) Welches der Ideale J und I(V(J)) ist im anderen enthalten. Falls eine echte Inklusion vorliegt, geben Sie ein Polynom an, das in einem der beiden Ideale liegt aber nicht im anderen. |
Hallo zusammen hänge bei dieser Aufgabe und habe leider keine Spur wo ich ansetzen könnte weiss zwar was die Varietät ist weiss jedoch nicht wie ich hier bei einem Ideal ansetzen kann.
Ich muss dazu sagen dass ich ein Algebraneuling bin und mich nur mal in der Algebraischen Geometrie versuchen will
mfg eddie
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:04 Mi 18.04.2012 | Autor: | felixf |
Moin eddie!
> Gegeben sei das Ideal J = [mm](X^{2}[/mm] + [mm]Y^{2}[/mm] - 1,Y - 1) [mm]\subset[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> K[X,Y]
> (a) Bestimmen Sie die Varietät V(J) und ihr Ideal
> I(V(J)) := { f [mm]\in[/mm] K[X,Y] | f(x,y) = 0 [mm]\forall[/mm] (x,y) [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> V(J)}
>
> (b) Welches der Ideale J und I(V(J)) ist im anderen
> enthalten. Falls eine echte Inklusion vorliegt, geben Sie
> ein Polynom an, das in einem der beiden Ideale liegt aber
> nicht im anderen.
>
> Hallo zusammen hänge bei dieser Aufgabe und habe leider
> keine Spur wo ich ansetzen könnte weiss zwar was die
> Varietät ist weiss jedoch nicht wie ich hier bei einem
> Ideal ansetzen kann.
Nun, zuerst musst du die Varietaet bestimmen. Die ist durch zwei Gleichungen definiert (welche?) und entpuppt sich als sehr einfach.
Versuch doch das erstmal hinzubekommen. Wenn du das hast, dann versuch dir zu ueberlegen, welche Polynome an allen Punkten in der Varietaet eine Nullstelle haben.
LG Felix
|
|
|
|