www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesIdentität verifizieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - Identität verifizieren
Identität verifizieren < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Identität verifizieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Sa 28.11.2009
Autor: valoo

Aufgabe
Seien d>0, m>0 und [mm] E:=\wurzel{m^{2}+p^{2}}. [/mm]
Verifizieren Sie die folgende Identität:

[mm] \integral_{0}^{\infty}{dp*p^{d-1}*ln(1-e^{-b*E})}=\integral_{0}^{\infty}{dp*p^{d-1}*(-\bruch{p^{2}*b}{dE})*\bruch{1}{e^{b*E}-1}} [/mm]

Ich habe mir erstmal gedacht, dass man
[mm] \integral_{0}^{\infty}{dp*p^{d-1}} [/mm] auf beiden Seiten wegstreichen kann... (hoffe ich doch, dass das legitim ist)
Dann habe ich versucht, dass irgendwie so umzuformen. dass das offensichtlich richtig ist, habs aber nicht hinbekommen... (ist wahrscheinlich auch der falsche Weg, oder?)
Dann habe ich mich an eine ähnlich (aber viel einfachere) Aufgabenstellung erinnert, in der man das durch Ableiten nach den einzelnen Variablen verifizieren sollte.
Gut, das habe ich probiert... Aber was mich die ganze Zeit stört ist dieses blöde dE auf der rechten Seite. Ich weiß garnicht, wie ich damit umgehen soll. Was ist nun der rechte Weg? Und wie?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Identität verifizieren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:56 Sa 28.11.2009
Autor: rainerS

Hallo!

> Seien d>0, m>0 und [mm]E:=\wurzel{m^{2}+p^{2}}.[/mm]
>  Verifizieren Sie die folgende Identität:
>  
> [mm]\integral_{0}^{\infty}{dp*p^{d-1}*ln(1-e^{-b*E})}=\integral_{0}^{\infty}{dp*p^{d-1}*(-\bruch{p^{2}*b}{dE})*\bruch{1}{e^{b*E}-1}}[/mm]
>  Ich habe mir erstmal gedacht, dass man
> [mm]\integral_{0}^{\infty}{dp*p^{d-1}}[/mm] auf beiden Seiten
> wegstreichen kann... (hoffe ich doch, dass das legitim
> ist)

[notok]

Das würde ja bedeuten, dass zwei beliebige Funktionen gleich sind, solange nur die Flächen unter ihren jeweiligen Grafen gleich sind.


Tipp: partielle Integration

>  Dann habe ich mich an eine ähnlich (aber viel einfachere)
> Aufgabenstellung erinnert, in der man das durch Ableiten
> nach den einzelnen Variablen verifizieren sollte.
> Gut, das habe ich probiert... Aber was mich die ganze Zeit
> stört ist dieses blöde dE auf der rechten Seite. Ich
> weiß garnicht, wie ich damit umgehen soll. Was ist nun der
> rechte Weg? Und wie?

Die Wahl des Symbols $d$ ist hier wirklich ungeschickt; das ist kein Differential, sondern $dE = d*E$

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]