www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisIdentitätsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Identitätsatz
Identitätsatz < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Identitätsatz: Stimmt das?
Status: (Frage) beantwortet Status 
Datum: 20:25 Mo 21.05.2012
Autor: teo

Aufgabe
Gibt es eine holomorphe Funktion [mm]f:\IC\to\IC[/mm] mit [mm]f(\frac{1}{n}) = \frac{n}{2n-1}[/mm] für alle [mm]n\in \IN[/mm]?

Lösung:

Die Menge [mm]\{z\in \IC|f(z)=\frac{1}{2-z}\} [/mm] hat wegen [mm] \{\frac{1}{n}\in \IC| n\in \IN\} \subset \{z\in \IC| f(z)=\frac{1}{2-z}\} [/mm] einen Häufungspunkt in [mm] \IC, [/mm] nämlich 0. Nach dem Identitätsatz ist dann [mm]f(\frac{1}{n}) = \frac{n}{2n-1}[/mm] für alle [mm]n\in \IN [/mm].

Ich bin mir nicht sicher ob das stimmt, da ja [mm] z \mapsto \frac{1}{2-z}[/mm] nur in [mm] \IC\backslash\{2\} [/mm] definiert ist.

Vielen Dank!

Grüße

        
Bezug
Identitätsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:54 Mo 21.05.2012
Autor: SEcki


> Nach dem
> Identitätsatz ist dann [mm]f(\frac{1}{n}) = \frac{n}{2n-1}[/mm]
> für alle [mm]n\in \IN [/mm].

Soso. Vielleicht ist es blos die Vorraussetzung ...

> Ich bin mir nicht sicher ob das stimmt, da ja [mm]z \mapsto \frac{1}{2-z}[/mm]
> nur in [mm]\IC\backslash\{2\}[/mm] definiert ist.

Und was sagt die der Identitätssatz denn genau?

SEcki


Bezug
        
Bezug
Identitätsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 07:04 Di 22.05.2012
Autor: fred97


> Gibt es eine holomorphe Funktion [mm]f:\IC\to\IC[/mm] mit
> [mm]f(\frac{1}{n}) = \frac{n}{2n-1}[/mm] für alle [mm]n\in \IN[/mm]?
>  
> Lösung:
>  
> Die Menge [mm]\{z\in \IC|f(z)=\frac{1}{2-z}\}[/mm] hat wegen
> [mm]\{\frac{1}{n}\in \IC| n\in \IN\} \subset \{z\in \IC| f(z)=\frac{1}{2-z}\}[/mm]
> einen Häufungspunkt in [mm]\IC,[/mm] nämlich 0.


> Nach dem
> Identitätsatz ist dann [mm]f(\frac{1}{n}) = \frac{n}{2n-1}[/mm]
> für alle [mm]n\in \IN [/mm].

Hä ? Das ist doch eine Eigenschaft, die f nach Vor. hat !

>  
> Ich bin mir nicht sicher ob das stimmt, da ja [mm]z \mapsto \frac{1}{2-z}[/mm]
> nur in [mm]\IC\backslash\{2\}[/mm] definiert ist.

Deine Idee ist gut. Setze [mm] g(z):=f(z)-\frac{1}{2-z} [/mm]  für z [mm] \in \IC\backslash\{2\} [/mm]

Wenn f holomorph auf [mm] \IC [/mm]  ist, so ist g holomorph auf [mm] \IC\backslash\{2\} [/mm]

Weiter ist g(1/n)=0 für alle n. Folglich ist g=0 auf [mm] \IC\backslash\{2\} [/mm]
(warum ? )

Also ist [mm] f(z)=\frac{1}{2-z} [/mm]  für z [mm] \in \IC\backslash\{2\} [/mm]

Das ist ein Widerspruch (zu was ?)

FRED


>  
> Vielen Dank!
>  
> Grüße


Bezug
                
Bezug
Identitätsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:39 Di 22.05.2012
Autor: teo


> > Gibt es eine holomorphe Funktion [mm]f:\IC\to\IC[/mm] mit
> > [mm]f(\frac{1}{n}) = \frac{n}{2n-1}[/mm] für alle [mm]n\in \IN[/mm]?
>  >  
> > Lösung:
>  >  
> > Die Menge [mm]\{z\in \IC|f(z)=\frac{1}{2-z}\}[/mm] hat wegen >> [mm]\{\frac{1}{n}\in \IC| n\in \IN\} \subset \{z\in \IC| f(z)=\frac{1}{2-z}\}[/mm]
> > einen Häufungspunkt in [mm]\IC,[/mm] nämlich 0.
>
>
> > Nach dem
> > Identitätsatz ist dann [mm]f(\frac{1}{n}) = \frac{n}{2n-1}[/mm]
> > für alle [mm]n\in \IN [/mm].
>  
> Hä ? Das ist doch eine Eigenschaft, die f nach Vor. hat !

Ja war ich wohl gestern zu müde...

>  >  
> > Ich bin mir nicht sicher ob das stimmt, da ja [mm]z \mapsto \frac{1}{2-z}[/mm]
> > nur in [mm]\IC\backslash\{2\}[/mm] definiert ist.
>  
> Deine Idee ist gut. Setze [mm]g(z):=f(z)-\frac{1}{2-z}[/mm]  für z
> [mm]\in \IC\backslash\{2\}[/mm]
>  
> Wenn f holomorph auf [mm]\IC[/mm]  ist, so ist g holomorph auf
> [mm]\IC\backslash\{2\}[/mm]
>  
> Weiter ist g(1/n)=0 für alle n. Folglich ist g=0 auf
> [mm]\IC\backslash\{2\}[/mm]
>   (warum ? )
>  
> Also ist [mm]f(z)=\frac{1}{2-z}[/mm]  für z [mm]\in \IC\backslash\{2\}[/mm]
>  
> Das ist ein Widerspruch (zu was ?)
>  
> FRED
>  
>
> >  

> > Vielen Dank!
>  >  
> > Grüße
>  

Man könnte es dann doch auch so machen:

Angenommen es gibt eine holomorphe Funktion [mm]f:\IC\to \IC[/mm] mit [mm]f(\frac{1}{n})=\frac{n}{2n-1}[/mm] dann gilt:

Die Menge [mm]\{z\in \IC|f(z)=\frac{1}{2-z}\}[/mm] hat wegen [mm]\{\frac{1}{n}\in \IC| n\in \IN\} \subset \{z\in \IC| f(z)=\frac{1}{2-z}\}[/mm] einen Häufungspunkt in [mm]\IC,[/mm] nämlich 0.
  
Nach dem
Identitätsatz ist dann [mm]f(z) = \frac{1}{2-z}[/mm]. Dann hat f in 2 aber eine isolierte Singulatiät, ist also nicht holomorph auf ganz [mm] \IC. [/mm] Widerspruch.
Somit gibt es keine Funktion f mit den geforderten Eigenschaften.

Danke!

Grüße

Bezug
                        
Bezug
Identitätsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:06 Di 22.05.2012
Autor: fred97


> > > Gibt es eine holomorphe Funktion [mm]f:\IC\to\IC[/mm] mit
> > > [mm]f(\frac{1}{n}) = \frac{n}{2n-1}[/mm] für alle [mm]n\in \IN[/mm]?
>  >  
> >  

> > > Lösung:
>  >  >  
> > > Die Menge [mm]\{z\in \IC|f(z)=\frac{1}{2-z}\}[/mm] hat wegen >>
> [mm]\{\frac{1}{n}\in \IC| n\in \IN\} \subset \{z\in \IC| f(z)=\frac{1}{2-z}\}[/mm]
> > > einen Häufungspunkt in [mm]\IC,[/mm] nämlich 0.
> >
> >
> > > Nach dem
> > > Identitätsatz ist dann [mm]f(\frac{1}{n}) = \frac{n}{2n-1}[/mm]
> > > für alle [mm]n\in \IN [/mm].
>  >  
> > Hä ? Das ist doch eine Eigenschaft, die f nach Vor. hat !
>  
> Ja war ich wohl gestern zu müde...
> >  >  

> > > Ich bin mir nicht sicher ob das stimmt, da ja [mm]z \mapsto \frac{1}{2-z}[/mm]
> > > nur in [mm]\IC\backslash\{2\}[/mm] definiert ist.
>  >  
> > Deine Idee ist gut. Setze [mm]g(z):=f(z)-\frac{1}{2-z}[/mm]  für z
> > [mm]\in \IC\backslash\{2\}[/mm]
>  >  
> > Wenn f holomorph auf [mm]\IC[/mm]  ist, so ist g holomorph auf
> > [mm]\IC\backslash\{2\}[/mm]
>  >  
> > Weiter ist g(1/n)=0 für alle n. Folglich ist g=0 auf
> > [mm]\IC\backslash\{2\}[/mm]
>  >   (warum ? )
>  >  
> > Also ist [mm]f(z)=\frac{1}{2-z}[/mm]  für z [mm]\in \IC\backslash\{2\}[/mm]
>  
> >  

> > Das ist ein Widerspruch (zu was ?)
>  >  
> > FRED
>  >  
> >
> > >  

> > > Vielen Dank!
>  >  >  
> > > Grüße
> >  

>
> Man könnte es dann doch auch so machen:
>  
> Angenommen es gibt eine holomorphe Funktion [mm]f:\IC\to \IC[/mm]
> mit [mm]f(\frac{1}{n})=\frac{n}{2n-1}[/mm] dann gilt:
>  
> Die Menge [mm]\{z\in \IC|f(z)=\frac{1}{2-z}\}[/mm] hat wegen
> [mm]\{\frac{1}{n}\in \IC| n\in \IN\} \subset \{z\in \IC| f(z)=\frac{1}{2-z}\}[/mm]
> einen Häufungspunkt in [mm]\IC,[/mm] nämlich 0.
>
> Nach dem
> Identitätsatz ist dann [mm]f(z) = \frac{1}{2-z}[/mm]. Dann hat f in
> 2 aber eine isolierte Singulatiät, ist also nicht
> holomorph auf ganz [mm]\IC.[/mm] Widerspruch.
>  Somit gibt es keine Funktion f mit den geforderten
> Eigenschaften.

Richtig. Noch 2 Bemerkungen:

1. Du solltest noch erwähnen, das 2 keine hebbare Singularität ist.

2. Du schreibst oben: "  Man könnte es dann doch auch so machen".

Du hast es nicht anders gemacht als ich.

FRED

>  
> Danke!
>  
> Grüße


Bezug
                                
Bezug
Identitätsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:11 Di 22.05.2012
Autor: teo

Vielen Dank!

Ich wollte nur dein "g" nicht benutzen ;-).

Viele Grüße

Bezug
                                        
Bezug
Identitätsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:14 Di 22.05.2012
Autor: fred97


> Vielen Dank!
>  
> Ich wollte nur dein "g" nicht benutzen ;-).

Mir gehört das "g" nicht ! Du kannst es also ruhigen Gewissens benutzen.

FRED

>  
> Viele Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]