www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisIdentitätssatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Identitätssatz
Identitätssatz < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Identitätssatz: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:32 Di 22.05.2012
Autor: teo

Aufgabe
Gibt es eine holomorphe Funktion [mm]f:\{z\in \IC:|z|<2\} \to \IC\[/mm], so dass [mm] f(\frac{1}{2})=2[/mm] ist und [mm] |f(z)|= 1 [/mm] für alle [mm] z\in\IC [/mm] mit [mm]|z|=1 [/mm] gilt?

Hallo,

Lösung:
Behauptung: nein
Angenommen es gibt eine solche Funktion f. Dann erfüllt [mm]f(z)=\frac{1}{z}[/mm] die Eigenschaften [mm]f(\frac{1}{2})=2[/mm] und [mm]|f(z)|=\frac{1}{|z|}=1[/mm] für alle [mm] z \in \IC[/mm] mit [mm]|z|=1[/mm].
Die Menge [mm]\{\frac{1}{n}\in \IC: n\in \IN\} \subset {z\in \IC: f(z)=\frac{1}{z}\} [/mm] hat den Häufungspunkt 0 in [mm]\{z\in \IC:|z|<2\}[/mm]. Also gilt nach dem Identitätssatz [mm]f(z)=\frac{1}{z}[/mm]. Dann bestitzt f jedoch wegen [mm]\limes_{z\rightarrow 0} f(z) = \infty[/mm] eine hebbare Singularität in 0, ist also nicht holomorph in 0. Widerspruch zu f ist holomorph auf [mm]\{z\in \IC: |z|< 2\}[/mm].

Stimmt das so?

Vielen Dank!

Grüße

        
Bezug
Identitätssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 Di 22.05.2012
Autor: felixf

Moin!

> Gibt es eine holomorphe Funktion [mm]f:\{z\in \IC:|z|<2\} \to \IC\[/mm],
> so dass [mm]f(\frac{1}{2})=2[/mm] ist und [mm]|f(z)|= 1[/mm] für alle
> [mm]z\in\IC[/mm] mit [mm]|z|=1[/mm] gilt?
>  Hallo,
>  
> Lösung:
>  Behauptung: nein

[ok]

>  Angenommen es gibt eine solche Funktion f. Dann erfüllt
> [mm]f(z)=\frac{1}{z}[/mm] die Eigenschaften [mm]f(\frac{1}{2})=2[/mm] und
> [mm]|f(z)|=\frac{1}{|z|}=1[/mm] für alle [mm]z \in \IC[/mm] mit [mm]|z|=1[/mm].
> Die Menge [mm]\{\frac{1}{n}\in \IC: n\in \IN\} \subset {z\in \IC: f(z)=\frac{1}{z}\}[/mm]

Wieso ist $f(1/n) = n$ fuer alle $n [mm] \in \IN$? [/mm]

> hat den Häufungspunkt 0 in [mm]\{z\in \IC:|z|<2\}[/mm]. Also gilt
> nach dem Identitätssatz [mm]f(z)=\frac{1}{z}[/mm].

Das wuerde auch nicht gehen, da 0 kein Haeufungspunkt im Definitionsbereich von $z [mm] \mapsto \frac{1}{z}$ [/mm] ist.

Verwende doch einfach das Maximumsprinzip.

LG Felix


Bezug
                
Bezug
Identitätssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 Di 22.05.2012
Autor: teo


> Verwende doch einfach das Maximumsprinzip.
>  
> LG Felix
>  

Hallo,

mit der Verwendung vom Maximumsprinzip bin ich nicht so wirklich sicher:

Bedeutet die Eigenschaft [mm] f(\frac{1}{2})=2, [/mm] dass wegen [mm] |f(\frac{1}{2})|=|2|=2, [/mm] und |f(z)|=1 für alle [mm] z\in \IC [/mm] mit |z|= 1, dass f in [mm] \frac{1}{2} [/mm] ein lokales Maximum annimmt?
Daraus würde dann folgen, dass f konstant ist, also nicht obige Eigenschaften erfüllt, oder?

Vielen Dank

Bezug
                        
Bezug
Identitätssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Di 22.05.2012
Autor: fred97


> > Verwende doch einfach das Maximumsprinzip.
>  >  
> > LG Felix
>  >  
>
> Hallo,
>  
> mit der Verwendung vom Maximumsprinzip bin ich nicht so
> wirklich sicher:
>  
> Bedeutet die Eigenschaft [mm]f(\frac{1}{2})=2,[/mm] dass wegen
> [mm]|f(\frac{1}{2})|=|2|=2,[/mm] und |f(z)|=1 für alle [mm]z\in \IC[/mm] mit
> |z|= 1, dass f in [mm]\frac{1}{2}[/mm] ein lokales Maximum annimmt?

Nein, so nicht.

Das Max.-Prinzip sagt z.B.: f nimmt auf [mm] D:=\{z \in \IC:|z| \le 1\} [/mm] sein Max. auf [mm] \partial [/mm] D an.

Kann das bei obigem f sein ?

FRED

> Daraus würde dann folgen, dass f konstant ist, also nicht
> obige Eigenschaften erfüllt, oder?
>  
> Vielen Dank  


Bezug
                                
Bezug
Identitätssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 Di 22.05.2012
Autor: teo

Sieht der Beweis dann in etwa so aus?

Angenommen f ist holomorph in [mm]G := \{z\in \IC : |z| \leq 1\} \subset \{z \in \IC : |z| < 2\} [/mm] dann nimmt f wegen [mm] max_{z \in \overline{G}} \left| f(z) \right| = max_{z \in \partial G} \left|f(z) \right| = max_{|z|=1} \left|f(z)\right| = 1 [/mm] sein Maximum in 1 an. [mm]f(\frac{1}{2})= 2 > 1[/mm] liefert einen Widerspruch. Folglich ist f nicht holomorph auf G und somit auch nicht in [mm] \{z \in \IC : |z| < 2\}. [/mm]

Danke

Bezug
                                        
Bezug
Identitätssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 06:15 Mi 23.05.2012
Autor: fred97


> Sieht der Beweis dann in etwa so aus?

Ja

FRED

>  
> Angenommen f ist holomorph in [mm]G := \{z\in \IC : |z| \leq 1\} \subset \{z \in \IC : |z| < 2\}[/mm]
> dann nimmt f wegen [mm]max_{z \in \overline{G}} \left| f(z) \right| = max_{z \in \partial G} \left|f(z) \right| = max_{|z|=1} \left|f(z)\right| = 1[/mm]
> sein Maximum in 1 an. [mm]f(\frac{1}{2})= 2 > 1[/mm] liefert einen
> Widerspruch. Folglich ist f nicht holomorph auf G und somit
> auch nicht in [mm]\{z \in \IC : |z| < 2\}.[/mm]
>  
> Danke


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]