www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenElektrotechnikImpedanz, komplexe Wechselstr.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Elektrotechnik" - Impedanz, komplexe Wechselstr.
Impedanz, komplexe Wechselstr. < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Impedanz, komplexe Wechselstr.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 Mi 29.02.2012
Autor: Hans80

Aufgabe
Die Frage wurde nirgends explizit gestellt (kann daher fehlerhaft sein):

Es geht wieder um die komplexe Wechselstromrechnung.

Wenn ich einen Kondendsator und einen Ohmschen Widerstand in Reihe Schalte, so erhalte ich:

[mm] $Z_{ges}=R+\bruch{1}{j \omega C}$ [/mm]

Hallo!

Meine Frage ist nun, warum in meinen Lösungen immer ein gemeinsamer Nenner gebildet wird:

[mm] $Z_{ges}=R+\bruch{1}{j \omega C}=\bruch{jR \omega C+1}{j \omega C}$ [/mm]

Wie geht ihr bei solchen Aufgaben vor? Macht ihr das auch so?
Vereinfachen sich dadurch die Aufgaben (Wenn sie Anspruchsvoller werden) oder ist das einfach geschmackssache?

Gruß  und danke im vorraus
Hans

        
Bezug
Impedanz, komplexe Wechselstr.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:09 Mi 29.02.2012
Autor: leduart

Hallo
in deinem fall ist das auf den HN bringen ncht nötig, weil du direkt schreiben kannst [mm] Z=R-j*\1(\omega*C) [/mm]
aber i.A. will man Z als Realteil+Imaginärteil schreiben um Betrag undPhasenverschiebung zu berechnen. also ist dein Bsp eigentlich ungeeignet, weil man das direkt ablesen kann. deshalb bezweifle ich, dass das inBeispiellösungen so steht.
gruss leduart


Bezug
                
Bezug
Impedanz, komplexe Wechselstr.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:24 Mi 29.02.2012
Autor: Hans80

Aufgabe
Angenommen, ich hätte eine Schaltung bei der [mm] $Z_1$ [/mm] und [mm] $Z_2$ [/mm] parallelgeschaltet sind.
Wobei:

[mm] $Z_1=R_0 [/mm] + [mm] \bruch{1}{i \omega C}$ [/mm] und

[mm] $Z_2=R_1 [/mm] + i [mm] \omega [/mm] L$



Ok, dann eben an einem Beispiel:

Wenn ich nun die Gesamtimpedanz ausrechnen will, habe ich folgendes:

[mm] $Z_{ges}=\bruch{Z_1 \cdot Z_2}{Z_1+Z_2}=\bruch{(R_0 + \bruch{1}{i \omega C}) \cdot (R_1 + i \omega L)}{(R_0 + \bruch{1}{i \omega C}) + (R_1 + i \omega L)}$ [/mm]

Man könnte das ja nun einfach so ausrechnen, indem man Real und Imaginärteil zusammenfasst und jeweils den Betrag von Zähler und Nenner berechnet.
Es wird aber immer zunächst alles auf den gemeinsamen Nenner $j [mm] \omega [/mm] C$ gebracht.

Bei diesem Beispiel kürzt sich durch dieses Verfahren natürlich $j [mm] \omega [/mm] C$ im oberen und unteren Bruch weg.
Vorher macht man sich ja aber trotzdem die Arbeit mit dem Hauptnenner. Ich finde dass dieses Vorgehen dadurch "fehlerbehafteter ist".
Meine Frage ist also nach wie vor, ob das ein Standartvorgehen bei solchen Aufgaben ist, oder ob es geschmacksache ist wie man da vorgeht?

Gruß Hans

Bezug
                        
Bezug
Impedanz, komplexe Wechselstr.: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Mi 29.02.2012
Autor: leduart

Hallo
es ist Geschmacksache wie man vorgeht, und wann und ob man einen HN bildet, viele Leute machen beim Rechnen mit Doppelbrüchen leichter Fehler oder können es gar nicht, für die ist es besser immer nur mit "einfachen" Brüchen zu rechen. oft , -wie in diesem Fall- ist aber der schnelle Weg mit einem Nenner, der in Z und N auftritt wie hier [mm] i\omega*C [/mm] den Bruch zu erweitern, dazu erst auf den HN zu bringen ist aber überflüssig, hat aber denselben Effekt.
also, wenn du sowas siehst, rechne ohne HN! Auf jeden Fall auf dem Weg, der dir mehr liegt und bei den DU weniger Fehler machst!
allerdings reicht es nicht aus um die Phase zu bestimmen, nur den Betrag von Z und N zu bestimmen. Wenn die nicht gefragt ist hast du aber Recht.
Gruss leduart


Bezug
                                
Bezug
Impedanz, komplexe Wechselstr.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:49 Mi 29.02.2012
Autor: Hans80

Hallo Leduart!
Danke für deine Hilfe.





>  es ist Geschmacksache wie man vorgeht, und wann und ob man
> einen HN bildet, viele Leute machen beim Rechnen mit
> Doppelbrüchen leichter Fehler oder können es gar nicht,
> für die ist es besser immer nur mit "einfachen" Brüchen
> zu rechen. oft , -wie in diesem Fall- ist aber der schnelle
> Weg mit einem Nenner, der in Z und N auftritt wie hier
> [mm]i\omega*C[/mm] den Bruch zu erweitern, dazu erst auf den HN zu
> bringen ist aber überflüssig, hat aber denselben Effekt.
>  also, wenn du sowas siehst, rechne ohne HN! Auf jeden Fall
> auf dem Weg, der dir mehr liegt und bei den DU weniger
> Fehler machst!

Genau das wollte ich wissen. Danke.

>  allerdings reicht es nicht aus um die Phase zu bestimmen,
> nur den Betrag von Z und N zu bestimmen. Wenn die nicht
> gefragt ist hast du aber Recht.
> Gruss leduart
>  

Die Phase bekomme ich dann ja einfach indem ich in Zähler und Nenner jeweils:

[mm] $tan(\phi)=\bruch{X}{R}$ [/mm] wobei X=Imaginärteil R=Realteil

berechne und in Exponentialdarstellung hinschreibe.

Also, wie gesagt, vielen Dank für deine Hilfe.

Gruß Hans

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]