Implizite Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei f(x,y):= [mm] x^5+5x^4-16y^2, [/mm] M:={(x,y) [mm] \in \IR^2: [/mm] f(x,y)=0}. Zeigen Sie mit Hilfe des Satzes über implizite Funktionen, dass die Gleichung f(x,y)=0 in allen Punkten [mm] (x,y)\not=(0,0) [/mm] lokal nach x oder y aufgelöst werden kann.
Versuchen Sie mit Hilfe der lokalen Auflösung so viel über die Menge M herauszubekommen, dass Sie sie skizzieren können. Ist M eine Untermannigfaltigkeit? |
Also beim ersten Teil der Aufgabe müsste ich doch zeigen, dass [mm] \bruch{df}{dy}(x,y)=-32y [/mm] ungleich 0 ist, damit man f(x,y)=0 lokal nach y auflösen kann.
Und es muss [mm] \bruch{df}{dx}(x,y)=5x^3(x-4) [/mm] ungleich 0 sein, damit man f(x,y)=0 lokal nach x auflösen kann.
Was ich nun nicht verstehe, wieso das nun erfüllt ist?
Für die anderen Teile der Aufgabe fehlt mir bisher eine Idee.
|
|
|
|
Hallo Heureka89,
> Sei f(x,y):= [mm]x^5+5x^4-16y^2,[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
M:={(x,y) [mm]\in \IR^2:[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> f(x,y)=0}. Zeigen Sie mit Hilfe des Satzes über implizite
> Funktionen, dass die Gleichung f(x,y)=0 in allen Punkten
> [mm](x,y)\not=(0,0)[/mm] lokal nach x oder y aufgelöst werden kann.
> Versuchen Sie mit Hilfe der lokalen Auflösung so viel über
> die Menge M herauszubekommen, dass Sie sie skizzieren
> können. Ist M eine Untermannigfaltigkeit?
> Also beim ersten Teil der Aufgabe müsste ich doch zeigen,
> dass [mm]\bruch{df}{dy}(x,y)=-32y[/mm] ungleich 0 ist, damit man
> f(x,y)=0 lokal nach y auflösen kann.
> Und es muss [mm]\bruch{df}{dx}(x,y)=5x^3(x-4)[/mm] ungleich 0 sein,
Hier muß es doch heißen:
[mm]\bruch{df}{dx}(x,y)=5x^3(x\red{+}4)[/mm]
> damit man f(x,y)=0 lokal nach x auflösen kann.
> Was ich nun nicht verstehe, wieso das nun erfüllt ist?
> Für die anderen Teile der Aufgabe fehlt mir bisher eine
> Idee.
Es muß entweder [mm]\bruch{\partial f}{\partial y}\left(x,y\right) \not=0[/mm] oder
[mm]\bruch{\partial f}{\partial x}\left(x,y\riight) \not=0[/mm] sein, damit nach y bzw. x
aufgelöst werden kann.
Gruß
MathePower
|
|
|
|
|
Hallo,
danke für die Antwort.
Was ich aber noch nicht verstehe: [mm] \bruch{df}{dx}(x.y)=5x^3(x+4) [/mm] ist doch für x=-4 nicht ungleich 0. Deshalb verstehe ich nicht, wieso man f(x,y)=0 nach x auflösen kann?
|
|
|
|
|
Hallo Heureka89,
> Hallo,
> danke für die Antwort.
> Was ich aber noch nicht verstehe:
> [mm]\bruch{df}{dx}(x.y)=5x^3(x+4)[/mm] ist doch für x=-4 nicht
> ungleich 0. Deshalb verstehe ich nicht, wieso man f(x,y)=0
> nach x auflösen kann?
>
Im Fall x=-4 muß nach y aufgelöst werden, da [mm]y \not= 0[/mm].
Gruß
MathePower
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 08:14 So 21.06.2009 | Autor: | abakus |
> Hallo Heureka89,
>
> > Sei f(x,y):= [mm]x^5+5x^4-16y^2,[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}"
> müssen immer paarweise auftreten, es wurde aber ein Teil
> ohne Entsprechung gefunden (siehe rote Markierung)
>
> M:={(x,y) [mm]\in \IR^2:[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer
> paarweise auftreten, es wurde aber ein Teil ohne
> Entsprechung gefunden (siehe rote Markierung)
>
>
> > f(x,y)=0}. Zeigen Sie mit Hilfe des Satzes über implizite
> > Funktionen, dass die Gleichung f(x,y)=0 in allen Punkten
> > [mm](x,y)\not=(0,0)[/mm] lokal nach x oder y aufgelöst werden kann.
> > Versuchen Sie mit Hilfe der lokalen Auflösung so viel
> über
> > die Menge M herauszubekommen, dass Sie sie skizzieren
> > können. Ist M eine Untermannigfaltigkeit?
> > Also beim ersten Teil der Aufgabe müsste ich doch
> zeigen,
> > dass [mm]\bruch{df}{dy}(x,y)=-32y[/mm] ungleich 0 ist, damit man
> > f(x,y)=0 lokal nach y auflösen kann.
> > Und es muss [mm]\bruch{df}{dx}(x,y)=5x^3(x-4)[/mm] ungleich 0 sein,
>
>
> Hier muß es doch heißen:
>
> [mm]\bruch{df}{dx}(x,y)=5x^3(x\red{+}4)[/mm]
>
>
> > damit man f(x,y)=0 lokal nach x auflösen kann.
> > Was ich nun nicht verstehe, wieso das nun erfüllt ist?
> > Für die anderen Teile der Aufgabe fehlt mir bisher eine
> > Idee.
>
>
> Es muß entweder [mm]\bruch{\partial f}{\partial y}\left(x,y\right) \not=0[/mm]
> oder
> [mm]\bruch{\partial f}{\partial x}\left(x,y\riight) \not=0[/mm]
> sein, damit nach y bzw. x
> aufgelöst werden kann.
Hallo,
mit deiner Formulierung "...nach y bzw. x..." verschleierst du das Problem, indem du das "bzw." möglicherweise als "und" interpretierst.
Weiter oben habe ich an dieser Stelle ein "oder" gelesen.
Gruß Abakus
>
>
> Gruß
> MathePower
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:28 So 21.06.2009 | Autor: | Heureka89 |
Sorry, ich hatte einen Denkfehler, habe auch den ersten Teil der Aufgabe jetzt verstanden, es klappt auch alles.
Hat vielleicht jemand eine Idee, wei ich die Gleichung lokal nach x auflösen könnte, damit ich genug weiß, um die Menge M zu skizzieren?
|
|
|
|