www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenImplizite Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Implizite Funktionen
Implizite Funktionen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Implizite Funktionen: Tipp
Status: (Frage) für Interessierte Status 
Datum: 14:31 Di 30.06.2009
Autor: Lati

Aufgabe
Finden Sie einen Punkt [mm] (x_{0},y_{0},z_{0}) \in \IR^3, [/mm] für den die Gleichung

[mm] 10(2x^2+y^2+z^2-1)^3-x^2z^3-10y^2z^3=0 [/mm]

die Bedingungen des Satzes über implizite Funktionen erfüllt.
Skizzieren Sie für x=0 die Menge aller Punkte in der yz-Ebene, die die Gleichung erfüllen.

Hallo an alle,

ich habe mir bisher zu der Aufgabe folgendes überlegt:

Und zwar die Bedingungen, die zu erfüllen sind, sind doch:

1. Totale Differenzierbarkeit von f
2. [mm] det(\bruch{\partial f}{\partial y}) \not= [/mm] 0
3. [mm] f(x_{0},y_{0})=0 [/mm]

Bei 3. bin ich mir allerdings nicht sicher, ob das nötig ist.

Ok zu 1.:

Hier hab ich mir überlegt,dass man hier einfach die stetige Diffbarkeit der partiellen Ableitungen nachweisen kann:

[mm] \bruch{\partial f}{\partial x} [/mm] = [mm] 30(2x^2+y^2+z^2-1)^2*4x -2*z^3*x [/mm]

[mm] \bruch{\partial f}{\partial y} [/mm] = [mm] 30(2x^2+y^2+z^2-1)^2*2y [/mm] - [mm] 20*z^3*y [/mm]

[mm] \bruch{\partial f}{\partial z} [/mm] = [mm] 30(2x^2+y^2+z^2-1)^2*2z -3x^2z^2-30y^2z^2 [/mm]

Und hier kann man ja dann so argumentieren, dass Verkettungen und Summen von stetig diffbaren Funktionen wieder stetig diffbar sind oder?

Damit wäre die totale Diffbarkeit gezeigt.

zu 2. Hier verwirrt mich das [mm] z_{0}, [/mm] also bisher haben wir immer nur im [mm] \IR^2 [/mm] mit impliziten Funktionen gearbeitet und ich weiß jetzt nicht genau ob ich dann in diesem Fall auch einfach nur die Determinante der partiellen Ableitung nach y 0 setzen muss?

Und dann weiß ich jetzt auch nicht genau weiter,was ich noch machen muss.

Hättet ihr mir ein paar Tipps?

Vielen Dank!

Grüße

Lati


        
Bezug
Implizite Funktionen: Doppelpost
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Di 30.06.2009
Autor: Loddar

Hallo Lati!


Bitte keine Doppelposts. Du hast diese Frage bereits hier gestellt.


Gruß
Loddar


Bezug
                
Bezug
Implizite Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:37 Di 30.06.2009
Autor: Lati

Hi Loddar,

sorry dafür, aber gestern Abend ist die Frage auf Grund der Störung nicht in meinen Diskussionen aufgetaucht,da hab ich sie jetzt nochmal gestellt ohne vorher zu schauen, ob sie jetzt da ist.

Sorry!

Ach ja und wie kann ich eigentlich eine gestellte Frage entfernen?
Hab ich grad nicht gefunden...

Gruß
Lati

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]