Implizite Funktionen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Gegeben Sei die Funkion [mm] f:\IR^n \to \IR [/mm] , [mm] f(x_1,...,x_n) [/mm] = [mm] x_1+...+x_n [/mm] - [mm] x_1*...*x_n [/mm] und die Gleichung f(x)-f(p)=0. In welchen Punkten p sind die Vorraussetzungen des Satzes über implizite Funktionen für die (lokale) diffbare Auflösbarkeit dieser Gleichung nach einer Koordinate [mm] x_i [/mm] für alle i=1,...,n erfüllt? Bestimmen Sie in diesen Punkten explizit die Auflösung [mm] x_i=g_i(x_1,...,x_{i-1},x_{i+1},...,x_n) [/mm] und deren partielle Ableitungen [mm] \bruch{\partial g_i }{\partial x_j} [/mm] |
hi,
könnt ihr mir einen Tipp geben wie ich die aufgabe lösen kann
danke
richard
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:09 Mi 23.06.2010 | Autor: | fred97 |
> Gegeben Sei die Funkion [mm]f:\IR^n \to \IR[/mm] , [mm]f(x_1,...,x_n)[/mm] =
> [mm]x_1+...+x_n[/mm] - [mm]x_1*...*x_n[/mm] und die Gleichung f(x)-f(p)=0. In
> welchen Punkten p sind die Vorraussetzungen des Satzes
> über implizite Funktionen für die (lokale) diffbare
> Auflösbarkeit dieser Gleichung nach einer Koordinate [mm]x_i[/mm]
> für alle i=1,...,n erfüllt? Bestimmen Sie in diesen
> Punkten explizit die Auflösung
> [mm]x_i=g_i(x_1,...,x_{i-1},x_{i+1},...,x_n)[/mm] und deren
> partielle Ableitungen [mm]\bruch{\partial g_i }{\partial x_j}[/mm]
>
> hi,
>
> könnt ihr mir einen Tipp geben wie ich die aufgabe lösen
Ja, schau Dir den Satz über implizit def. Funktionen an !!!!!!!
FRED
> kann
>
> danke
> richard
|
|
|
|
|
hallo fred,
den satz hab ich mir natürlich durchgelesen. aber ich vesteh nicht, welche voraussetzung für die (lokale) differenzierbare Auflösbarkeit der gleichung f(x)-f(p) =0 erfüllt sein soll.
außerdem verstehe ich nicht woher diese gleichung kommt und was sie mit meiner funktion f zu tun hat
Hier der Satz aus der Vorlesung:
Sei U [mm] \subset R^m \times R^n [/mm] offen, f : U [mm] \to R^n [/mm] k-mal stetig differenzierbar (k [mm] \ge [/mm] 1)
und (p,q) [mm] \in [/mm] U, so dass f(p,q) = 0. Weiterhin sei das Differential der
Abbildung y [mm] \to [/mm] f(p,y) im Punkt y = q invertierbar.
Dann gibt es offene Umgebungen V [mm] \subset R^m [/mm] von p und W [mm] \subset R^n [/mm] von q und
eine k-mal stetig differenzierbare Abbildung g : V [mm] \to [/mm] W so dass für alle
(x,y) [mm] \in [/mm] V [mm] \times [/mm] W gilt: f(x,y) = 0 [mm] \gdw [/mm] y = g(x).
D.h. [mm] N_f(0) \cap [/mm] V [mm] \times [/mm] W = graph(g).
gruß
richard
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:47 Fr 25.06.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|