www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenImplizite Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Implizite Funktionen
Implizite Funktionen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Implizite Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:19 Mo 18.11.2013
Autor: bquadrat

Aufgabe
Durch [mm] F(J;K)=e^{J}sin(K)+e^{K}sin(J)-1=0 [/mm] ist implizit eine Funktion K=f(J) gegeben. Bestimmen Sie [mm] \bruch{df}{dJ} [/mm]

Kann mir da bitte jemand weiterhelfen? Ich habe keine Ahnung wie ich an diese Aufgabe rangehen soll...
Vielen Dank im Voraus

bquadrat

        
Bezug
Implizite Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Mo 18.11.2013
Autor: leduart

Hallo
schreibe für K   f(j), dann differenziere F=0  nach j und benutze die kettenregel. dann löse nach f' auf.
Gruss leduart

Bezug
                
Bezug
Implizite Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:09 Mo 18.11.2013
Autor: bquadrat

Gut, also schreibe ich [mm] F(J;f(J))=e^{J}sin(f(J))+e^{f(J)}sin(J)-1=0 [/mm]
Nun wird differenziert:
[mm] \bruch{dF}{dJ}=e^{J}sin(f(J))+e^{J}\bruch{df}{dJ}cos(f(J))+e^{f(J)}\bruch{df}{dJ}sin(J)+e^{f(J)}cos(J)=0 [/mm]

[mm] \Rightarrow -\bruch{df}{dJ}(e^{J}cos(f(J))+e^{f(J)}sin(J))=e^{J}sin(f(J))+e^{f(J)}cos(J) [/mm]
[mm] \Rightarrow \bruch{df}{dJ}=-\bruch{e^{J}sin(K)+e^{K}cos(J)}{e^{K}sin(J)+e^{J}cos(K)} [/mm]

stimmt das so?

Bezug
                        
Bezug
Implizite Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:11 Mo 18.11.2013
Autor: leduart

Hallo
richtig
Gruss leduart

Bezug
                                
Bezug
Implizite Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:19 Di 19.11.2013
Autor: bquadrat

Dankeschön :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]