www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenImplizite, Umkehr, Lagra. Satz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Implizite, Umkehr, Lagra. Satz
Implizite, Umkehr, Lagra. Satz < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Implizite, Umkehr, Lagra. Satz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:15 So 16.09.2012
Autor: Ganz

Moin
ich habe eine frage zum satz über impliziten funktion. satz über die umkehrfunktion und satz über lagrangesche multiplikatoren. Mein problem ist, dass ich nicht weiß was die sätze aussagen. Vielleich kann einer von euch mir in einpaar sätzen zu jedem satz eine erklärung schreiben. das würde mir sehr helfen, da ich die erklärungen die sonst im internet sind nicht verstehe.
Satz über implizite Funktion: i) [mm] \exists \varepsilon, \delta>0: B_{\delta}(x_{0})x B_{\varepsilon}(y_{0})\subseteq [/mm] U, sodass zu jedem x [mm] \in B_{\delta}(x_{0}) [/mm] die Gleichung f(x,y)=0 genau eine Lösung y [mm] \in B_{\varepsilon}(y_{0}) [/mm] hat.
ii) Die durch i) eindeutig bestimmte Funktion g: [mm] B_{\delta}(x_{0})-> B_{\varepsilon}(y_{0}) [/mm] mit F(x,g(x))=0 [mm] \forall [/mm] x [mm] \in B_{\delta}(x_{0}) [/mm] ist stetig differenzierbar.
iii) [mm] \forall [/mm] x [mm] \in B_{\delta}(x_{0}) [/mm] ist [mm] D_{y}F(x,g(x)) [/mm] invertierbar und es gilt [mm] g´(x)=-(D_{y}F(x,g(x)))^{-1}D_{x}F(x,g(x)) [/mm]
Umkehrsatz: Sei f:U [mm] \subseteq \IR^{p}->\IR^{p}, [/mm] U offen, p [mm] \in \IN, [/mm] stetig differenzierbar und sei s [mm] \in [/mm] U ein Punkt wo f´(s) invertierbar ist. Dann gibt es eine offene Umgebung W von s in U und eine offene Umgebung V von n=f(s), sodass f:W->V bijektiv ist. Die Umkehrfunktion von f ist stetig differenzierbar und [mm] (f^{-1})´(n)=(f´(s))^{-1} [/mm]
Lagrange: Sei f:U [mm] \subseteq \IR^{n}->\IR, [/mm] g: [mm] U->\IR^{p} (1\le [/mm] p < n) stetig differenzierbar, [mm] x_{0} \in [/mm] U. Die Jacobimatrix [mm] J_{g}(x_{0}) [/mm] habe Höchstrang (=p) und es gelte [mm] g(x_{0})=0. [/mm] Dann gilt: Hat f (eingeschränkt auf M), wobei M={x [mm] \in [/mm] U; g(x)=0}, ein lok. Extremum in [mm] x_{0}, [/mm] dann [mm] \exists \lambda_{1},...,\lambda_{p} \in \IR [/mm] (Langr. Multiplikatoren), sodass [mm] f´(x_{0})+ \summe_{j=1}^{p} \lambda_{j} g_{j}(x_{0})=0 [/mm]
Habe jetzt noch unsere Sätze aufgeschrieben.

Gruß

        
Bezug
Implizite, Umkehr, Lagra. Satz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mo 17.09.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Implizite, Umkehr, Lagra. Satz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:03 Mo 17.09.2012
Autor: Schachtel5

Der Satz über implizite Funktionen steht da aber nicht vollständig ;)
Vielleicht wird es dir helfen dir erstmal für Die Sätze und insb. den Satz über implizite Funktionen ein Beispiel anzuschauen.
http://www3.math.tu-berlin.de/Vorlesungen/SS08/Analysis2/Doc/ana2.pdf
hier auf Seite 99 steht ein Bsp und wunderbar erklärt ;) es sind aber einige Fehler in dem Skript im Satz und Beweis enthalten, aber die selbst auszubessern sollte kein Problem sein.
Die anderen beiden Sätze beweist man mit dem SÜIF.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]