www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikImpuls des Massenpunktes
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "HochschulPhysik" - Impuls des Massenpunktes
Impuls des Massenpunktes < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Impuls des Massenpunktes: Rechenweg
Status: (Frage) beantwortet Status 
Datum: 17:05 Di 09.12.2014
Autor: poeddl

Aufgabe
Ein Massenpunkt wird aus der Ruhe mit dem dargestellten Kraftverlauf in x-Richtung beschleunigt. Wie groß ist der Impuls des Massenpunktes zum Zeitpunkt t = 2T in kartesischen Koordinaten?

Gegeben: [mm] F_{0}, [/mm] T

Hallo,

mir ist nicht klar, wie die folgende Aufgabe gelöst werden soll.
Der Impuls zum Zeitpunkt 1 ist null, da der Massepunkt ja aus der Ruhe beschleunigt wird, sprich die Geschwindigkeit ist null.

Ich kenne aber weder die Masse, noch die Geschwindigkeit des Punktes zum Zeitpunkt 2, weswegen ich den Impulssatz nicht verwenden kann.

Was muss ich mit dem Diagramm machen, damit ich die Aufgabe lösen kann.
Die Lösung soll [mm] F_{0}T [/mm] sein.
Die y- und z-Komponente sind null, der Körper erfährt nur eine Kraft in x-Richtung.


[Dateianhang nicht öffentlich]

Ich bedanke mich vorab für eure Hilfe!

P.S.: Ich wusste nicht, in welchen Forenbereich die Frage am besten passt, aber als Maschinenbauer habt ihr ja alle mal Mechanik gehört ;)


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Impuls des Massenpunktes: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Di 09.12.2014
Autor: chrisno

Ich meine, dass diese Frage in der Physik am besten aufgehoben ist.

Reicht es Dir, wenn ich Dich an die Definition $F = [mm] \br{dp}{dt}$ [/mm] erinnere?
Dann geht es weiter mit [mm] $\int_0^{2T} [/mm] F dt = [mm] \int_0^p [/mm] 1 dp'$.

Bezug
                
Bezug
Impuls des Massenpunktes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:30 Di 09.12.2014
Autor: poeddl

Hallo,

leider hilft mir das nicht wirklich weiter.
An das Integral [mm] \int_0^{2T}Fdt [/mm] habe ich auch schon gedacht, das ist ja die Formel für den Kraftstoß - warum genau darf ich das hier aber nutzen?

Und was setze ich für F ein? [mm] F_{0}? [/mm]
Dein zweites Integral verstehe ich leider nicht, vielleicht kannst du mir das erklären und auch den Rest erklären.

Vielen Dank schon mal für deine Hilfe!  

Bezug
                        
Bezug
Impuls des Massenpunktes: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Di 09.12.2014
Autor: Event_Horizon

Hallo!

> Hallo,
>  
> leider hilft mir das nicht wirklich weiter.
>  An das Integral [mm]\int_0^{2T}Fdt[/mm] habe ich auch schon
> gedacht, das ist ja die Formel für den Kraftstoß - warum
> genau darf ich das hier aber nutzen?

nunja, das gilt doch immer:

[mm] \int\underbrace{m*a}_{=F}\,dt=\underbrace{m*v}_{=p} [/mm]

>  
> Und was setze ich für F ein? [mm]F_{0}?[/mm]

Die Kraft ist in diesem Fall nicht konstant, sondern ändert sich mit der Zeit so, wie von dem Diagramm vorgegeben. Das mußt du noch in ne Formel für F packen. (genauer, besser zwei Formeln für den steigenden und fallenden teil)

>  Dein zweites Integral verstehe ich leider nicht,
> vielleicht kannst du mir das erklären und auch den Rest
> erklären.

In einem kleinen Zeitraum $dt$ ändert sich der Impuls um $dp=F*dt_$. Im rechten Integral werden diese kleinen Impulsänderungen aufaddiert. Aber im Prinzip brauchst du das nicht.

>  
> Vielen Dank schon mal für deine Hilfe!  


Bezug
                                
Bezug
Impuls des Massenpunktes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:07 Di 09.12.2014
Autor: poeddl

Hallo,

auch dir erstmal vielen Dank für die Antwort!

Den letzten Teil mit den zwei Funktionen verstehe ich nicht.
Bzw. ich weiss glaube ich zumindest, worauf du hinauswillst.
Der Flächeninhalt ist ja gerade [mm] \bruch{F_{0}*2T}{2}=F_{0}T [/mm] , also das gesuchte Ergebnis, da dies ja gerade  [mm] \int\underbrace{m\cdot{}a}_{=F}\,dt=\underbrace{m\cdot{}v}_{=p} [/mm]
ist. Liege ich soweit überhaupt richtig, oder erzähle ich totalen Mist?

Aber irgendwie stehe ich mit den Funktionen auf dem Schlauch. Wenn mir da noch jemand weiterhelfen könnte, wäre ich sehr dankbar.

Bezug
                                        
Bezug
Impuls des Massenpunktes: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 Di 09.12.2014
Autor: chrisno

Du musst nun genauer klären, was Du mit
> Aber irgendwie stehe ich mit den Funktionen auf dem
> Schlauch. Wenn mir da noch jemand weiterhelfen könnte,
> wäre ich sehr dankbar.

meinst.

Du hast richtig integriert, indem Du die Dreieicksflächen berechnet hast. Das war die Aufgabe. Auch stimmt Deine Interpretation des Vorgangs als Kraftstoß.


Bezug
                                                
Bezug
Impuls des Massenpunktes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:18 Di 09.12.2014
Autor: poeddl

Wenn ich länger drüber nachdenke...
Keine Ahnung, was ich jetzt genau noch wissen wollte.

Ich danke euch recht herzlich für eure Geduld und die tollen Erklärungen!
Jetzt muss ich nur die Zusammenhänge verinnerlichen und dann denke ich, hab ich es verstanden.

Vielen, vielen Dank! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]