Induktion. < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:40 Sa 24.02.2007 | Autor: | Samajona |
Aufgabe | Use Induction to prove that:
for all n [mm] \in \IN [/mm] such that n>= 5, [mm] 2^n [/mm] > [mm] n^2. [/mm] |
Hallo, ich habe mal eine Frage zur oben gestellten Aufgabe zum Thema Induktion und zwar komme ich mit der Lösung dieser Aufgabe nicht ganz zurecht.
Ich würde die Aufgabe folgendermaßen versuchen zu lösen:
Base Case: n= 5
32>25 this is true for all n=5
Induction Step: Prove for (n+1)that: 2^(n+1) > (n+1)²
[mm] \Rightarrow: 2*2^n [/mm] > n²+2n+1
Uns wurde folgende Lösung vorgestellt, die ich leider nicht so ganz verstanden habe:(
[mm] 2^{n+1}=2*2^n [/mm] >2n² =n²+n² >n²+3n >n²+2n+1 =(n+1)² q.e.d.
Was passiert in dem Abschnitt: (>2n² =n²+n² >n²+3n >n²+2n+1 =(n+1))?
Ich verstehe auch nicht so ganz woher das (2n²) kommt.
Wäre echt lieb, wenn mir jemand weiterhelfen könnte. Ich schreibe nächste Woche eine Klausur und die Induktion kommt bestimmt dran;)
Viele Grüße und ein schönes Wochenende euch allen.
Nora
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:52 Sa 24.02.2007 | Autor: | Loddar |
Hallo Samajona!
Bei [mm] $2*\red{2^n} [/mm] \ > \ [mm] 2*\red{n^2}$ [/mm] wurde die Induktionsvoraussetzung [mm] $2^n [/mm] \ > \ [mm] n^2$ [/mm] verwendet.
In Deinem Beweis wird zunächst verwendet: [mm] $n^2 [/mm] \ = [mm] \green{n}*n [/mm] \ > \ [mm] \green{3}*n$ [/mm] (wegen $n \ [mm] \ge [/mm] \ 5 \ > \ 3$) und anschließend $3n \ = [mm] 2n+\blue{n} [/mm] \ > \ [mm] 2n+\blue{1}$ [/mm] (wegen $n \ [mm] \ge [/mm] \ 5 \ > \ 1$).
Alternativ kannst Du auch mittels einer Nebenrechnung (ebenfalls vollständige Induktion) zeigen, dass gilt: [mm] $n^2 [/mm] \ > \ 2n+1$ ; und bist auch fertig.
Gruß
Loddar
|
|
|
|