www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseInduktion die nicht geht
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Induktionsbeweise" - Induktion die nicht geht
Induktion die nicht geht < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion die nicht geht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:22 Do 20.10.2016
Autor: rubi

Hallo zusammen,

ich bin auf der Suche nach einer Formel über natürliche Zahlen, die aber nicht für alle n funktioniert.

Fall 1:
Es funktioniert zwar der Induktionsschritt, aber es gibt keinen Induktionsanfang.

Fall 2:
Die Formel gilt für die ersten natürlichen Zahlen, aber ab einem bestimmten n nicht mehr (ich habe hier mal gehört, dass eine Formel geben soll, die bis ungefähr n = 40 funktioniert und danach nicht mehr).

Kann mir jemand für beide Fälle jeweils ein Beispiel liefern ?
Am schönsten wäre hier eine Art Summenformel.

Vielen Dank im voraus.

Grüße
Rubi

Ich habe diese Frage in keinem anderen Forum gestellt.


        
Bezug
Induktion die nicht geht: Antwort
Status: (Antwort) fertig Status 
Datum: 01:14 Fr 21.10.2016
Autor: tobit09

Hallo rubi!


> Fall 1:
> Es funktioniert zwar der Induktionsschritt, aber es gibt
> keinen Induktionsanfang.

Betrachte für jede natürliche Zahl n jeweils die Aussage "n=n+1".


Allgemeiner:

Nimm eine Formel deiner Wahl (z.B. eine Summenformel), die für alle natürlichen Zahlen eine wahre Gleichheit reeller Zahlen ausdrückt, und ergänze z.B. auf der rechten Seite ein "+1". Anstelle der 1 kannst du auch jede beliebige andere reelle Zahl außer der 0 nehmen.


Anderes Beispiel:

Betrachte für jede natürliche Zahl n jeweils die Aussage

      "n ist der Nachfolger einer natürlichen Zahl, d.h. es existiert eine natürliche Zahl m mit $n=m+1$".


Wenn du lieber keinen Existenzquantor möchtest, kannst du das vorige Beispiel wie folgt abwandeln (ich nehme hier an, dass die 0 zu den natürlichen Zahlen zählt):
Betrachte für jede natürliche Zahl n jeweils die Aussage "n>0".


> Fall 2:
> Die Formel gilt für die ersten natürlichen Zahlen, aber
> ab einem bestimmten n nicht mehr (ich habe hier mal
> gehört, dass eine Formel geben soll, die bis ungefähr n =
> 40 funktioniert und danach nicht mehr).

Für eine Teilmenge [mm] $M\subseteq\IN$ [/mm] ist die Indikatorfunktion [mm] $1_M\colon\IN\to\IR$ [/mm] definiert durch

       [mm] $1_M(n):=\begin{cases} 1, & \mbox{für } n\in M \\ 0, & \mbox{sonst}\end{cases}$. [/mm]

Sei nun speziell [mm] $M=\{1,2,3,\ldots,1.000.000\}$. [/mm]

Dann gilt die Summenformel

       [mm] $\sum_{i=1}^n 1_M(i)=n$ [/mm]

für alle [mm] $n=0,1,2,\ldots,1.000.000$, [/mm] aber nicht für $n>1.000.000$.


Anderes Beispiel:

Die Formel

     [mm] $\produkt_{i=0}^{1.000.000}(n-i)=0$ [/mm]

gilt ebenfalls für [mm] $n=0,1,2,\ldots,1.000.000$, [/mm] aber nicht für $n>1.000.000$.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]