www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionInduktionsbeweis- Ungleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Induktion" - Induktionsbeweis- Ungleichung
Induktionsbeweis- Ungleichung < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweis- Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 Sa 01.11.2008
Autor: simple

Aufgabe
beweisen sie mit vollständiger Induktion:
2n + 1 [mm] \le 2^{n} [/mm]  für alle n [mm] \in \IN, [/mm] n [mm] \ge [/mm] 3

hallooo =)

kann mir vll jemand bei dieser aufgabe helfen, ich komme leider nicht weiter.
ich habe probleme mit der umformung...

liebe grüße

        
Bezug
Induktionsbeweis- Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 Sa 01.11.2008
Autor: schachuzipus

Hallo simple,

> beweisen sie mit vollständiger Induktion:
>  2n + 1 [mm]\le 2^{n}[/mm]  für alle n [mm]\in \IN,[/mm] n [mm]\ge[/mm] 3
>  hallooo =)
>  
> kann mir vll jemand bei dieser aufgabe helfen, ich komme
> leider nicht weiter.
>  ich habe probleme mit der umformung...

Du meinst im Induktionsschritt [mm] $n\to [/mm] n+1$ ?

Ok, Induktionsanfang machst du!

Also Induktionsschritt: [mm] $n\to [/mm] n+1$

Inuktionsvoraussetzung: Sei [mm] $n\in\IN, n\ge [/mm] 3$ beliebig aber fest und gelte [mm] $\red{2n+1\le 2^n}$ [/mm]

Nun ist zu zeigen, dass die Beh. auch für $n+1$ gilt, dass also [mm] $2(n+1)+1\le 2^{n+1}$ [/mm] ist

Nehmen wir also die linke Seite her und schauen, was wir machen können..

[mm] $2(n+1)+1=2n+3=\red{2n+1}+2\le\red{2^n}+2$ [/mm] nach Induktionsvoraussetzung

[mm] $\le 2^n+2^n=2^n\cdot{}2=2^{n+1}$ [/mm]

voilà

LG

schachuzipus

>  
> liebe grüße


Bezug
        
Bezug
Induktionsbeweis- Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 Sa 01.11.2008
Autor: simple

also erst einmal danke =)
aber einen schritt verstehe ich nicht, wie kommt man zum letzten schritt?
wie wird die I.V. angewendet?

grüßle

Bezug
                
Bezug
Induktionsbeweis- Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Sa 01.11.2008
Autor: Steffi21

Hallo, die Induktionsvoraussetzung hat schachuzipus sogar rot geschrieben, wir bekommen dann

[mm] 2^{n}+2\le 2^{n}+2^{n} [/mm]

es gilt [mm] 2\le 2^{n} [/mm] somit ist die rechte Seite der Ungleichung größer/gleich  der linken Seite der Ungleichung für [mm] n\ge [/mm] 1

bei [mm] 2^{n}*2^{1}=2^{n+1} [/mm] kommt ein Potenzgesetz zur Anwendung
Steffi

Bezug
                        
Bezug
Induktionsbeweis- Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:17 Sa 01.11.2008
Autor: simple

ok jetzt hab ichs verstanden =)
dankeschön

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]