www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionInduktionsbeweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Induktion" - Induktionsbeweis
Induktionsbeweis < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:22 Sa 18.11.2006
Autor: Carlchen

Aufgabe
Man beweise durch vollständige Induktion:

Für alle natürlichen Zahlen [mm] n > 0 [/mm] gilt:

[mm] \left(\bruch{n}{3}\right)^n \le \bruch{1}{3} n![/mm]

Hi Freunde,

benötige ein bisschen Schützenhilfe bei dieser Aufgabe. :)

Also:

(IV): [mm] \left(\bruch{n}{3}\right)^n \le \bruch{1}{3} n![/mm] gilt für [mm] n > 0 [/mm]

(IA): [mm]\bruch{1}{3} = \bruch{1}{3}[/mm] stimmt!

(IB): [mm]n \to n+1[/mm]

[mm]\Rightarrow \left(\bruch{n+1}{3}\right)^{n+1} \le \bruch{1}{3} (n+1)![/mm]

[mm]\Rightarrow \left(\bruch{n+1}{3}\right) \left(\bruch{n+1}{3}\right)^n \le \bruch{1}{3} n! (n+1)[/mm]

[mm]\Rightarrow \left(\bruch{n+1}{3}\right)^n \le n! [/mm]

Bis hierhin. Nun komm ich nicht weiter bzw. ich weiß nicht, was ich genau machen könnte/soll.
Wäre für jede Hilfe dankbar. :)

Gruß Carlchen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Induktionsbeweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:47 So 19.11.2006
Autor: Carlchen

Hat keiner eine Idee? :)

Bezug
        
Bezug
Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 16:46 So 19.11.2006
Autor: zahlenspieler

Hallo Carlchen,
Für den Induktionsschritt brauchst du noch [mm](1+\bruch{1}{n})^n <3[/mm].
M.E. geht das am einfachsten, wenn man die Folgen [mm] $(a_n), (b_n)_{n>0}$, [/mm] definiert durch
[mm]a_n:=(1+\bruch{1}{n)^n,\quad b_n:=(1+\bruch{1}{n+1})^{n+1}[/mm] betrachtet und zeigt: [mm] $b_n<3$, $(b_n)$ [/mm] ist streng monoton fallend, und [mm] $a_n Gruß
zahlenspieler

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]