www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionInduktionsbeweis mit >
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Induktion" - Induktionsbeweis mit >
Induktionsbeweis mit > < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweis mit >: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:09 So 13.03.2011
Autor: racy90

Hallo,

Die "normalen" Induktionsbeweise hab ich so weit verstanden aber sobald ein > oder > Zeichen vorhanden ist,klappts nicht mehr .

Das Bsp lautet: [mm] n*\wurzel{n}>n+\wurzel{n} [/mm]

n≥3

Die I.A is klar ab 3 halt aber wie geht es dann weiter,was muss ich für Überlegen anstellen?

        
Bezug
Induktionsbeweis mit >: Antwort
Status: (Antwort) fertig Status 
Datum: 11:20 So 13.03.2011
Autor: fred97


> Hallo,
>  
> Die "normalen" Induktionsbeweise hab ich so weit verstanden
> aber sobald ein > oder > Zeichen vorhanden ist,klappts
> nicht mehr .
>  
> Das Bsp lautet: [mm]n*\wurzel{n}>n+\wurzel{n}[/mm]
>
> n≥3
>  
> Die I.A is klar ab 3 halt aber wie geht es dann weiter,was
> muss ich für Überlegen anstellen?

Die üblichen !

I.V.:  für ein n [mm] \in \IN [/mm] , n [mm] \ge [/mm] 3, sei  [mm]n*\wurzel{n}>n+\wurzel{n}[/mm]

Zeige nun:   [mm](n+1)*\wurzel{n+1}>n+1+\wurzel{n+1}[/mm]

FRED


Bezug
                
Bezug
Induktionsbeweis mit >: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:29 So 13.03.2011
Autor: racy90

und das muss ich jetz nur auflösen und das wars?

Bezug
                        
Bezug
Induktionsbeweis mit >: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 So 13.03.2011
Autor: kamaleonti

Hallo,
> und das muss ich jetz nur auflösen und das wars?

Dann probier es doch mal.

Mir ist allerdings unklar, warum bei dieser Aussage überhaupt Induktion:
$ [mm] n\cdot{}\wurzel{n}>n+\wurzel{n} [/mm] $ [mm] \gdw [/mm]
$ [mm] (n-1)\cdot\wurzel{n}>n$ \Leftarrow [/mm]
$ [mm] n-1>\sqrt{n}$ [/mm]

Vielleicht willst du lieber die letzte Aussage induktiv zeigen. Die ist aber trivial für [mm] n\geq3... [/mm]

Gruß

Bezug
                                
Bezug
Induktionsbeweis mit >: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:46 So 13.03.2011
Autor: racy90

ich hab mir das Bsp leider nicht ausgesucht :(

aber ich soll das Bsp [mm] n*\wurzel{n}>n+\wurzel{n} [/mm] mittels vollständiger Ind.
beweisen

Bezug
                                        
Bezug
Induktionsbeweis mit >: Antwort
Status: (Antwort) fertig Status 
Datum: 11:52 So 13.03.2011
Autor: fred97


> ich hab mir das Bsp leider nicht ausgesucht :(
>  
> aber ich soll das Bsp [mm]n*\wurzel{n}>n+\wurzel{n}[/mm] mittels
> vollständiger Ind.


Warum versuchst Du es denn nicht ?

[mm] $(n+1)\wurzel{n+1}= n\wurzel{n+1}+ \wurzel{n+1}> n\wurzel{n}+ \wurzel{n+1}$ [/mm]

Jetzt I.V. und dann [mm] \wurzel{n}>1 [/mm] verewenden. Mach mal.

FRED

>  beweisen


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]